目录
- MapReduce的原理
- Map阶段
- Reduce阶段
- Shuffle阶段
- MapReduce程序实现
- 总结
接下来,我们编写Reduce函数。Reduce函数将具有相同键的值相加,并将结果作为键值对输出。以下是Reduce函数的代码:
javaCopy codepublic static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum));
最后,我们将Map函数和Reduce函数组合起来,并将它们作为MapReduce程序的一部分提交给Hadoop集群。以下是完整的MapReduce程序:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); context.write(word, one); } } } public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "wordcount"); job.setJarByClass(WordCount.class); job.setMapperClass(Map.class); job.setCombinerClass(Reduce.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
在上面的代码中,我们首先定义了Map类和Reduce类,然后在main函数中将它们组合起来,使用Job类将程序提交给Hadoop集群进行处理。我们使用FileInputFormat和FileOutputFormat指定输入和输出路径。
总结
本文介绍了MapReduce的原理和使用Java编写MapReduce程序的方法。MapReduce是一个强大的并行编程模型,可用于处理大规模数据集。如果你正在处理大数据集,那么MapReduce可能是你的首选方案。
以上就是深入探究如何使用Java编写MapReduce程序的详细内容,更多关于Java编写MapReduce程序的资料请关注其它相关文章!
原文地址:https://juejin.cn/post/7231200657900847141