在并发程序中,程序员会特别关注不同进程或线程之间的数据同步,特别是多个线程同时修改同一变量时,必须采取可靠的同步或其它措施保障数据被正确地修改,这里的一条重要原则是:不要假设指令执行的顺序,你无法预知不同线程之间的指令会以何种顺序执行。
但是在单线程程序中,通常我们容易假设指令是顺序执行的,否则可以想象程序会发生什么可怕的变化。理想的模型是:各种指令执行的顺序是唯一且有序的,这个顺序就是它们被编写在代码中的顺序,与处理器或其它因素无关,这种模型被称作顺序一致性模型,也是基于冯·诺依曼体系的模型。当然,这种假设本身是合理的,在实践中也鲜有异常发生,但事实上,没有哪个现代多处理器架构会采用这种模型,因为它是在是太低效了。而在编译优化和CPU流水线中,几乎都涉及到指令重排序。
编译期重排序
编译期重排序的典型就是通过调整指令顺序,在不改变程序语义的前提下,尽可能减少寄存器的读取、存储次数,充分复用寄存器的存储值。
假设第一条指令计算一个值赋给变量A并存放在寄存器中,第二条指令与A无关但需要占用寄存器(假设它将占用A所在的那个寄存器),第三条指令使用A的值且与第二条指令无关。那么如果按照顺序一致性模型,A在第一条指令执行过后被放入寄存器,在第二条指令执行时A不再存在,第三条指令执行时A重新被读入寄存器,而这个过程中,A的值没有发生变化。通常编译器都会交换第二和第三条指令的位置,这样第一条指令结束时A存在于寄存器中,接下来可以直接从寄存器中读取A的值,降低了重复读取的开销。
重排序对于流水线的意义
现代CPU几乎都采用流水线机制加快指令的处理速度,一般来说,一条指令需要若干个CPU时钟周期处理,而通过流水线并行执行,可以在同等的时钟周期内执行若干条指令,具体做法简单地说就是把指令分为不同的执行周期,例如读取、寻址、解析、执行等步骤,并放在不同的元件中处理,同时在执行单元EU中,功能单元被分为不同的元件,例如加法元件、乘法元件、加载元件、存储元件等,可以进一步实现不同的计算并行执行。
流水线架构决定了指令应该被并行执行,而不是在顺序化模型中所认为的那样。重排序有利于充分使用流水线,进而达到超标量的效果。
确保顺序性
尽管指令在执行时并不一定按照我们所编写的顺序执行,但毋庸置疑的是,在单线程环境下,指令执行的最终效果应当与其在顺序执行下的效果一致,否则这种优化便会失去意义。
通常无论是在编译期还是运行期进行的指令重排序,都会满足上面的原则。
Java存储模型中的重排序
在Java存储模型(Java Memory Model, JMM)中,重排序是十分重要的一节,特别是在并发编程中。JMM通过happens-before法则保证顺序执行语义,如果想要让执行操作B的线程观察到执行操作A的线程的结果,那么A和B就必须满足happens-before原则,否则,JVM可以对它们进行任意排序以提高程序性能。
volatile关键字可以保证变量的可见性,因为对volatile的操作都在Main Memory中,而Main Memory是被所有线程所共享的,这里的代价就是牺牲了性能,无法利用寄存器或Cache,因为它们都不是全局的,无法保证可见性,可能产生脏读。
volatile还有一个作用就是局部阻止重排序的发生,对volatile变量的操作指令都不会被重排序,因为如果重排序,又可能产生可见性问题。
在保证可见性方面,锁(包括显式锁、对象锁)以及对原子变量的读写都可以确保变量的可见性。但是实现方式略有不同,例如同步锁保证得到锁时从内存里重新读入数据刷新缓存,释放锁时将数据写回内存以保数据可见,而volatile变量干脆都是读写内存。