目录
- MapReduce框架
- 1、框架图
- 2、Input数据输入
- 2.1概念
- 2.2数据切片与MapTask并行度
- 2.3切片过程
- 2.4类图
- 2.5TextInputFormat
- 2.6CombineTextInputFormat
- 2.7Read阶段
- 3、Map阶段
- 4、Collect收集阶段
- 5、Shuffle阶段
- 6、ReduceTask
MapReduce框架
1、框架图
Input→Mapper→shuffle→Reducer→Output
2、Input数据输入
2.1概念
(1)数据块(Block),物理存储,Block是HDFS物理上把文件分成一块一块。数据块是HDFS存储数据单位。
(2)数据切片,逻辑存储,数据切片是MapReduce程序j最小计算输入数据的单位。一个切片会启动一个MapTask
2.2数据切片与MapTask并行度
(1)一个Job的Map阶段并行度由客户端在提交job时的切片数决定;
(2)每一个split切片分配一个MapTask并行实例片
(3)切片是针对每一个文件单独切片
(4)默认情况下,切片大小等于Block Size块大小
MapTask数据=输入文件切片数据
2.3切片过程
(1)程序先找到数据存储目录
(2)开始遍历处理目录下的每一个文件
A、按每个文件进行切片
B、判断文件是否可以切片(snappy、Gzip压缩不能切)
(3)遍历第一个文件
获取文件大小→计算切片大小→开始切片→将切片信息写入切片规划文件中→提交切片规划文件到yarn
A、获取文件大小:fs.size(文件)
B、计算切片大小:设置minsize、maxsize、blocksize
mapreduce.input.fileinputformat.split.minsize=1 默认值为1 mapreduce.input.fileinputformat.split.maxsize=Long.MAXValue 默认值Long.MAXValue
计算公式 :computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))
最大取最小,最小取最大。因此切片大小默认与 HDFS 的 block 保持一致。
maxsize(切片最大值): 参数如果调到比 blocksize 小,则会让切片变小,而且就等于配置的这个参数的值。minsize(切片最小值): 参数调的比 blockSize 大,则可以让切片变得比 blocksize 还大。
C、开始切片:getSplit()
每次切片时,都要判断剩下的是否大于块的1.1倍,不大于1.1倍就切分成一块切片
D、将切片信息写入切片规划文件中:job.split
记录起始位置、长度、所在切点列表等
E、提交切片规划文件到yarn
yarn上MRAppMaster根据切片规划计算MapTask数
三个文件:切片规则文件(job.split)、参数配置文件(job.xml)、程序jar包
2.4类图
B、在job驱动中,设置自定义partitioner,job.setPartitionerClass(自定义分区类.class)
C、自定义Partition后,要根据自定义Partitioner的逻辑设置相应的数量的ReduceTask:job.setNumReduceTasks(数量)
public class FlowDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { // 1.获取job对象 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 2.关联本Driver类 job.setJarByClass(FlowDriver.class); // 3.关联Mapper和Reducer类 job.setMapperClass(FlowMapper.class); job.setReducerClass(FlowReducer.class); // 4.设置Map端输出KV类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); // 5.设置最终输出KV类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); // 6.设置程序的输入和输出路径 FileInputFormat.setInputPaths(job, new Path("C:\\install\\temp\\input\\input02\\phone_data.txt")); FileOutputFormat.setOutputPath(job, new Path("C:\\install\\temp\\output\\output06")); // 8.指定自定义分区器 job.setPartitionerClass(ProvincePartitioner.class); // 9.同时也指定相应数量的ReduceTask--对应的参数mapreduce.job.reduces,默认为1 job.setNumReduceTasks(5); // 7.提交job boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } }
(5)Partition分区总结
A、如果ReduceTask数量 > getPartition()结果数,则会多产生几个空的输出文件
B、如果 1 <ReduceTask数量 <getPartition()结果数,则有一部分分区数据无处安放,会异常
C、如果ReduceTask数量=1,则不管MapTask输出多少个分区文件,最终结果只有一个ReduceTask,只会产生一个结果文件。(分区数不大于1,不会走默认hash分区器和自定义分区器,直接返回)
D、分区号必须从0开始,逐一累加
(6)排序
A、排序是MapReduce框架中最重要的操作之一
B、MapTask和ReduceTask均会对数据按key进行排序,该 操作属于Hadoop的默认行为 。任务应用程序中的数据均会被排序,而不管逻辑上是否需要。
C、默认排序是按照字典顺序排序,排序的方法为快速排序
D、排序分类:部分排序、全排序、辅助排序、二次排序
(7)溢写
A、当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件
(8)Combiner
A、Combiner是MR程序中Mapper和Reducer之外的一种组件
B、Combiner的父类是Reducer
C、Combiner与Reducer区别:在于运行的位置 ,Combiner是在每一个MapTask所在节点运行,即在分区、排序后准备溢写前可以进行combiner。Reducer是接收全局所有MapTask输出结果。
D、Combiner的意义是对每一个MapTask的输出进行局部汇总,以减少网络传输量
E、Combiner应用前提是不影响最终的业务逻辑
public class WordCountCombiner extends Reducer<Text, IntWritable, Text,IntWritable> { private IntWritable outV = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } outV.set(sum); context.write(key,outV); } }
public class WordCountDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { // 一获取二关联三设置一提交 // 1.获取配置信息及Job对象 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 2.关联本Driver程序的类 job.setJarByClass(WordCountDriver.class); // 3.关联Mapper和Reducer的业务类 job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); // 4.设置Mapper输出的KV类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 5.设置最终输出的KV类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // 6.设置输入和输出路径 //FileInputFormat.setInputPaths(job, new Path(args[0])); //FileOutputFormat.setOutputPath(job, new Path(args[1])); FileInputFormat.setInputPaths(job, new Path("C:\\install\\temp\\input\\hadoop.txt")); FileOutputFormat.setOutputPath(job, new Path("C:\\install\\temp\\output\\output01-2")); // 8.设置Combiner类--方式一 //job.setCombinerClass(WordCountCombiner.class); // 方式二:其新建的WordCountCombiner的reduce方法处理与正常的WordCountReducer中的reduce方法处理逻辑是一样 // 因此可以直接用此类作为combiner类 job.setCombinerClass(WordCountReducer.class); // 9.设置ReduceTasks的数量--这样就没有reduce阶段,就不会有shuffle,Combiner也就没有用,直接由map输出, // 文件名为part-m-00000,就是不part-r-00000,两者结果是不一样的 // 即如果没有reduce阶段,即使设置了combiner也不起作用 // job.setNumReduceTasks(0); // 7.提交job boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); // 0-正常退出 非0(1)异常终止(结束) } }
(9)Meger
A、MapTask以分区为单位进行合并,对所有临时文件合并成一个大文件(output/file.out),同时生成相应索引文件(output/file.out.index)
B、对某个分区采用多轮递归合并的方式,每次合并默认10个文件,每个MapTask最终得到一个大文件
6、ReduceTask
(1)Copy阶段
ReduceTask从各个MapTask上远程拷贝一片数据,如大小超过阀值,则写到磁盘上,否则直接放在内存中
(2)Sort阶段
由于各个MapTask已经实现了对自己处理结果进行了局部排序,因此ReduceTask只需要对所有数据进行一次归并排序即可
(3)Reducer阶段
reduce()函数将计算结果写到HDFS上
(4)其他
A、ReduceTask数量默认是1,可手动设置job.setNumReduceTasks(数量)
B、ReduceTask=0,表示没有reduce阶段,输出文件个数和Map个数一致
C、如果数据分布不均匀,就会在reduce阶段产生数据倾斜
D、ReduceTask数量并不能任意设置,要考虑业务逻辑需求,具体多少个ReduceTask,需要根据集群性能确定
E、如果分区数不是1,但ReduceTask为1,不执行分区过程(执行分区的前提是判断ReduceNum个数是否大于1)
原文地址:https://blog.csdn.net/dreamsun_meng/article/details/130499496