服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - R语言 - R语言 Factor类型的变量使用说明

R语言 Factor类型的变量使用说明

2021-12-31 16:08葑歆 R语言

这篇文章主要介绍了R语言 Factor类型的变量使用说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

factor类型的创建

1. factor( )

> credit_rating <- c("BB", "AAA", "AA", "CCC", "AA", "AAA", "B", "BB") #生成名为credit_rating的字符向量
> credit_factor <- factor(credit_rating) # step 2.将credit_rating转化为因子
> credit_factor
[1] BB AAA AA CCC AA AAA B BB 
Levels: AA AAA B BB CCC
> str(credit_rating) #调用str()函数,显示credit_rating结构
chr [1:8] "BB" "AAA" "AA" "CCC" "AA" "AAA" "B" "BB"
> str(credit_factor) #调用str()函数,显示credit_factor结构
Factor w/ 5 levels "AA","AAA","B",..: 4 2 1 5 1 2 3 4

 

2. levels( )

上述代码中第二个运行后得到了levals,用于显示不同的因子(不重复),上述代码运行一二行

>credit_rating <- c("BB", "AAA", "AA", "CCC", "AA", "AAA", "B", "BB") 
> credit_factor <- factor(credit_rating) # step 2.将credit_rating转化为因子
> credit_factor
[1] BB AAA AA CCC AA AAA B BB 
Levels: AA AAA B BB CCC
> levels(credit_factor)
[1] "AA" "AAA" "B" "BB" "CCC"
>levels(credit_factor) <-c("2A","3A","1B","2B","3C")
> credit_factor
[1] 2B 3A 2A 3C 2A 3A 1B 2B
Levels: 2A 3A 1B 2B 3C

 

3. Factor 汇总:summary()函数

> summary(credit_rating)
Length Class Mode 
8 character character 
> summary(credit_factor)
AA AAA B BB CCC 
2 2 1 2 1 

 

4. factor 可视化:plot()

# 使用plot()将credit_factor可视化
plot(credit_factor)
#> summary(credit_factor)
# AA AAA B BB CCC 
# 2 2 1 2 1 

R语言 Factor类型的变量使用说明

 

5. cut( )函数 对数据进行分组

>AAA_rank <- sample(seq(1:100), 50, replace = T)
> AAA_rank
[1] 90 28 63 57 96 41 93 70 76 36 26 1 86 43 47 15 23 70
[19] 63 1 79 100 20 59 17 23 84 96 21 33 32 19 52 58 81 37
[37] 22 58 42 75 41 64 15 58 63 2 1 65 54 35
> # step 1:使用cut()函数为AAA_rank创建4个组
> AAA_factor <- cut(x = AAA_rank , breaks =c(0,25,50,75,100) )
> > AAA_factor 
[1] (75,100] (25,50] (50,75] (50,75] (75,100] (25,50] (75,100] (50,75] 
[9] (75,100] (25,50] (25,50] (0,25] (75,100] (25,50] (25,50] (0,25] 
[17] (0,25] (50,75] (50,75] (0,25] (75,100] (75,100] (0,25] (50,75] 
[25] (0,25] (0,25] (75,100] (75,100] (0,25] (25,50] (25,50] (0,25] 
[33] (50,75] (50,75] (75,100] (25,50] (0,25] (50,75] (25,50] (50,75] 
[41] (25,50] (50,75] (0,25] (50,75] (50,75] (0,25] (0,25] (50,75] 
[49] (50,75] (25,50] 
Levels: (0,25] (25,50] (50,75] (75,100]
> # step 2:使用levels()按顺序将级别重命名
> levels(AAA_factor) <- c("low","medium","high","very_high")
> 
> # step 3:输出AAA_factor
> AAA_factor
[1] medium medium very_high high very_high high high 
[8] high medium medium very_high high medium very_high
[15] medium low medium low high medium low 
[22] medium high very_high very_high very_high medium very_high
[29] low low low medium very_high low very_high
[36] low very_high low low high medium medium 
[43] medium low low low low medium medium 
[50] medium 
Levels: low medium high very_high
> 
> # step 4:绘制AAA_factor
> plot(AAA_factor)
> 

R语言 Factor类型的变量使用说明

 

6. 删除元素 :- 表示删除

(1)-1:删除第一位的元素,-3:删除第三位的元素

(2)

> credit_factor
[1] BB AAA AA CCC AA AAA B BB 
Levels: AA AAA B BB CCC
> # 删除位于`credit_factor`第3和第7位的`A`级债券,不使用`drop=TRUE`
> keep_level <- credit_factor[c(-3,-7)]
> 
> # 绘制keep_level
> plot(keep_level)
> 
> # 使用相同的数据,删除位于`credit_factor`第3和第7位的`A`级债券,使用`drop=TRUE`
> drop_level <-credit_factor[c(-3,-7),drop=TRUE]
> 
> # 绘制drop_level
> plot(drop_level)
> 

 

7. 转换Factor为String类型

>cash=data.frame(company = c("A", "A", "B"), cash_flow = c(100, 200, 300), year = c(1, 3, 2)) #创建数据框
>str(cash)
'data.frame': 3 obs. of 3 variables:
$ company : Factor w/ 2 levels "A","B": 1 1 2
$ cash_flow: num 100 200 300
$ year : num 1 3 2

注意:创建数据框时,R的默认行为是将所有字符转换为因子

那么,如何在创建数据框时,不让r的默认行为执行呢?

采用 stringsAsFactors = FALSE

> cash=data.frame(company = c("A", "A", "B"), cash_flow = c(100, 200, 300), year = c(1, 3, 2),stringsAsFactors=FALSE) #创建数据框
> str(cash)
'data.frame': 3 obs. of 3 variables:
$ company : chr "A" "A" "B"
$ cash_flow: num 100 200 300
$ year : num 1 3 2

 

8. 创建有序Factor类型:ordered=TRUE

# 有序Factor类型
credit_rating <- c("AAA", "AA", "A", "BBB", "AA", "BBB", "A")
credit_factor_ordered <- factor(credit_rating, ordered = TRUE, levels = c("AAA", "AA", "A", "BBB"))
>credit_rating <- c("BB", "AAA", "AA", "CCC", "AA", "AAA", "B", "BB") 
> credit_factor <- factor(credit_rating) # step 2.将credit_rating转化为因子
> credit_factor #此时的credit_factor 无序
>ordered(credit_factor, levels = c("AAA", "AA", "A", "BBB"))

 

9. 删除因子级别时. 采用drop=TRUE

>credit_factor
[1] AAA AA A BBB AA BBB A 
Levels: BBB < A < AA < AAA
>credit_factor[-1]
[1] AA A BBB AA BBB A 
Levels: BBB < A < AA < AAA #可见,AAA还存在
>credit_factor[-1, drop = TRUE] #完全放弃AAA级别
[1] AA A BBB AA BBB A 
Levels: BBB < A < AA

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://wyqiu.blog.csdn.net/article/details/88741498

延伸 · 阅读

精彩推荐
  • R语言R语言编程学习绘制动态图实现示例

    R语言编程学习绘制动态图实现示例

    这篇文章主要介绍了R语言编程学习绘制动态图实现示例,有需要的的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪...

    微小冷7652022-01-18
  • R语言R语言可视化存储矢量图实现方式

    R语言可视化存储矢量图实现方式

    这篇文章主要为大家介绍了R语言存储矢量图的实现方式过程,有需要的朋友可以借鉴参考下,希望能够有所你帮助,祝大家多多进步,早日升职加薪...

    Kanny广小隶9392022-01-20
  • R语言R语言绘制散点图实例分析

    R语言绘制散点图实例分析

    在本篇文章里小编给大家整理的是一篇关于R语言绘制散点图实例分析内容,有需要的朋友们可以学习下。...

    w3cschool6942022-01-06
  • R语言R语言-使用ifelse进行数据分组

    R语言-使用ifelse进行数据分组

    这篇文章主要介绍了R语言-使用ifelse进行数据分组,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    小力丸12042022-01-10
  • R语言R studio 批量注释的快捷方式

    R studio 批量注释的快捷方式

    这篇文章主要介绍了R studio 批量注释的快捷方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    JasonKQLin13342022-01-04
  • R语言聊聊R语言中Legend 函数的参数用法

    聊聊R语言中Legend 函数的参数用法

    这篇文章主要介绍了聊聊R语言中Legend 函数的参数用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    Gavin姓陈6352021-12-28
  • R语言R语言中c()函数与paste()函数的区别说明

    R语言中c()函数与paste()函数的区别说明

    这篇文章主要介绍了R语言中c()函数与paste()函数的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    yiyu_j11152022-01-12
  • R语言R语言创建矩阵的实现方法

    R语言创建矩阵的实现方法

    这篇文章主要介绍了R语言创建矩阵的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随...

    hjk_caesar9462021-12-27