服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C语言实现二叉树的搜索及相关算法示例

C语言实现二叉树的搜索及相关算法示例

2021-05-16 19:57typ2004 C/C++

这篇文章主要介绍了C语言实现二叉树的搜索及相关算法,结合具体实例形式分析了基于C语言创建、遍历、搜索等相关算法与实现技巧,需要的朋友可以参考下

本文实例讲述了C语言实现二叉树的搜索及相关算法。分享给大家供大家参考,具体如下:

二叉树(二叉查找树)是这样一类的树,父节点的左边孩子的key都小于它,右边孩子的key都大于它。

二叉树在查找和存储中通常能保持logn的查找、插入、删除,以及前驱、后继,最大值,最小值复杂度,并且不占用额外的空间。

这里演示二叉树的搜索及相关算法:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#include<stack>
#include<queue>
using namespace std;
class tree_node{
public:
  int key;
  tree_node *left;
  tree_node *right;
  int tag;
  tree_node(){
    key = 0;
    left = right = NULL;
    tag = 0;
  }
  ~tree_node(){}
};
void visit(int value){
  printf("%d\n", value);
}
// 插入
tree_node * insert_tree(tree_node *root, tree_node* node){
  if (!node){
    return root;
  }
  if (!root){
    root = node;
    return root;
  }
  tree_node * p = root;
  while (p){
    if (node->key < p->key){
      if (p->left){
        p = p->left;
      }
      else{
        p->left = node;
        break;
      }
    }
    else{
      if (p->right){
        p = p->right;
      }
      else{
        p->right = node;
        break;
      }
    }
  }
  return root;
}
// 查询key所在node
tree_node* search_tree(tree_node* root, int key){
  tree_node * p = root;
  while (p){
    if (key < p->key){
      p = p->left;
    }
    else if (key > p->key){
      p = p->right;
    }
    else{
      return p;
    }
  }
  return NULL;
}
// 创建树
tree_node* create_tree(tree_node *t, int n){
  tree_node * root = t;
  for (int i = 1; i<n; i++){
    insert_tree(root, t + i);
  }
  return root;
}
// 节点前驱
tree_node* tree_pre(tree_node* root){
  if (!root->left){ return NULL; }
  tree_node* p = root->left;
  while (p->right){
    p = p->right;
  }
  return p;
}
// 节点后继
tree_node* tree_suc(tree_node* root){
  if (!root->right){ return NULL; }
  tree_node* p = root->right;
  while (p->left){
    p = p->left;
  }
  return p;
}
// 中序遍历
void tree_walk_mid(tree_node *root){
  if (!root){ return; }
  tree_walk_mid(root->left);
  visit(root->key);
  tree_walk_mid(root->right);
}
// 中序遍历非递归
void tree_walk_mid_norecursive(tree_node *root){
  if (!root){ return; }
  tree_node* p = root;
  stack<tree_node*> s;
  while (!s.empty() || p){
    while (p){
      s.push(p);
      p = p->left;
    }
    if (!s.empty()){
      p = s.top();
      s.pop();
      visit(p->key);
      p = p->right;
    }
  }
}
// 前序遍历
void tree_walk_pre(tree_node *root){
  if (!root){ return; }
  visit(root->key);
  tree_walk_pre(root->left);
  tree_walk_pre(root->right);
}
// 前序遍历非递归
void tree_walk_pre_norecursive(tree_node *root){
  if (!root){ return; }
  stack<tree_node*> s;
  tree_node* p = root;
  s.push(p);
  while (!s.empty()){
    tree_node *node = s.top();
    s.pop();
    visit(node->key);
    if (node->right){
      s.push(node->right);
    }
    if (node->left){
      s.push(node->left);
    }
  }
}
// 后序遍历
void tree_walk_post(tree_node *root){
  if (!root){ return; }
  tree_walk_post(root->left);
  tree_walk_post(root->right);
  visit(root->key);
}
// 后序遍历非递归
void tree_walk_post_norecursive(tree_node *root){
  if (!root){ return; }
  stack<tree_node*> s;
  s.push(root);
  while (!s.empty()){
    tree_node * node = s.top();
    if (node->tag != 1){
      node->tag = 1;
      if (node->right){
        s.push(node->right);
      }
      if (node->left){
        s.push(node->left);
      }
    }
    else{
      visit(node->key);
      s.pop();
    }
  }
}
// 层级遍历非递归
void tree_walk_level_norecursive(tree_node *root){
  if (!root){ return; }
  queue<tree_node*> q;
  tree_node* p = root;
  q.push(p);
  while (!q.empty()){
    tree_node *node = q.front();
    q.pop();
    visit(node->key);
    if (node->left){
      q.push(node->left);
    }
    if (node->right){
      q.push(node->right);
    }
  }
}
// 拷贝树
tree_node * tree_copy(tree_node *root){
  if (!root){ return NULL; }
  tree_node* newroot = new tree_node();
  newroot->key = root->key;
  newroot->left = tree_copy(root->left);
  newroot->right = tree_copy(root->right);
  return newroot;
}
// 拷贝树
tree_node * tree_copy_norecursive(tree_node *root){
  if (!root){ return NULL; }
  tree_node* newroot = new tree_node();
  newroot->key = root->key;
  stack<tree_node*> s1, s2;
  tree_node *p1 = root;
  tree_node *p2 = newroot;
  s1.push(root);
  s2.push(newroot);
  while (!s1.empty()){
    tree_node* node1 = s1.top();
    s1.pop();
    tree_node* node2 = s2.top();
    s2.pop();
    if (node1->right){
      s1.push(node1->right);
      tree_node* newnode = new tree_node();
      newnode->key = node1->right->key;
      node2->right = newnode;
      s2.push(newnode);
    }
    if (node1->left){
      s1.push(node1->left);
      tree_node* newnode = new tree_node();
      newnode->key = node1->left->key;
      node2->left = newnode;
      s2.push(newnode);
    }
  }
  return newroot;
}
int main(){
  tree_node T[6];
  for (int i = 0; i < 6; i++){
    T[i].key = i*2;
  }
  T[0].key = 5;
  tree_node* root = create_tree(T, 6);
  //tree_walk_mid(root);
  //tree_walk_mid_norecursive(root);
  //tree_walk_pre(root);
  //tree_walk_pre_norecursive(root);
  //tree_walk_post(root);
  //tree_walk_post_norecursive(root);
  //tree_walk_level_norecursive(root);
  visit(search_tree(root, 6)->key);
  visit(tree_pre(root)->key);
  visit(tree_suc(root)->key);
  //tree_node* newroot = tree_copy_norecursive(root);
  //tree_walk_mid(newroot);
  return 0;
}

希望本文所述对大家C语言程序设计有所帮助。

延伸 · 阅读

精彩推荐