前言
栈是什么,你可以理解为一种先入后出的数据结构(First In Last Out),一种操作受限的线性表...
C实现
借助与C语言中的void指针及函数指针,我们可以实现一个链式通用栈:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
/* stack.h */ #ifndef _STACK_H_ #define _STACK_H_ typedef struct stackNode { void *value; struct stackNode *next; } stackNode; typedef struct stack { stackNode *top; void (* free )( void *ptr); unsigned long size; } stack; /* Functions implemented as macros */ #define stackTop(s) ((s)->top) #define stackSize(s) ((s)->size) #define stackSetFreeMethod(s, m) ((s)->free = (m)) #define stackGetFreeMethod(s) ((s)->free) stack *stackCreate( void ); stack *stackPush(stack *stack, void *value); stackNode *stackPop(stack *stack); void stackClear(stack *stack); #endif /* _STACK_H_ */ /* stack.c */ #include <stdlib.h> #include "stack.h" stack *stackCreate( void ) { struct stack *stack; if ((stack = ( struct stack *) malloc ( sizeof ( struct stack))) == NULL) return NULL; stack->top = NULL; stack-> free = NULL; stack->size = 0; return stack; } stack *stackPush(stack *stack, void *value) { stackNode *node; if ((node = (stackNode *) malloc ( sizeof (stackNode))) == NULL) return NULL; node->value = value; node->next = (stack->size == 0) ? NULL : stack->top; stack->top = node; stack->size++; return stack; } stackNode *stackPop(stack *stack) { stackNode *node; node = stack->top; if (stack->size != 0) { stack->top = node->next; stack->size--; } return node; } void stackClear(stack *stack) { unsigned long size; stackNode *current, *next; current = stack->top; size = stack->size; while (size--) { next = current->next; if (stack-> free ) stack-> free (current->value); free (current); current = next; } free (stack); } |
这里的实现附设了一个头节点,主要用于注册与栈节点操作相关的函数。我们把栈的大小信息也存了进去,这样就可以在O(1)的时间内获取当前栈大小了!
Python实现
在Python中,list其实可以直接作为栈使用,如果你只在它的一端进行操作的话。当然我们也可以简单封装一下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
class Stack( object ): """A stack encapsulation based on list.""" def __init__( self ): self .items = [] def empty( self ): return self .items = = [] def clear( self ): del self .items[:] @property def size( self ): return len ( self .items) def push( self , item): """Add a new item to the top of the stack.""" self .items.insert( 0 , item) def pop( self ): """Remove the top item from the stack.""" return self .items.pop( 0 ) def top( self ): """Return the top item from the stack but not remove it. """ return self .items[ 0 ] def __iter__( self ): return iter ( self .items) def __next__( self ): return self .pop() |
应用
下面介绍几个栈的典型应用。
括号匹配
给你一个算术表达式或者一段C代码,如何写一个程序验证它其中的括号是否匹配?借助栈,可以很容易实现。算法流程如下:
遍历字符:
1.如果是左括号,push入栈;
2. 如果是右括号,这时候如果栈为空,说明不匹配,如果栈不为空并且pop出栈的左括号与右括号类型不一样,说明不匹配;
遍历结束后,如果栈不为空,说明不匹配。
1
2
3
4
5
6
7
8
9
10
11
|
def check_pares( exp ): "" "Check if parentheses match in a expression." "" stack = Stack() pares = { ')' : '(' , ']' : '[' , '}' : '{' } for x in exp : if x in '([{' : stack.push(x) elif x in ')]}' : if stack.empty() or pares[x] != stack.pop(): return False return True if stack.empty() else False |
数制转换
以十进制转二进制为例:
1
2
3
4
5
6
7
8
9
10
|
def dec2bin(dec): "" "Converting decimal number to binary string." "" if dec == 0: return '0' stack = Stack() while dec: r = dec % 2 stack.push(r) dec = dec // 2 return '' .join(str(digit) for digit in stack) |
模拟递归
遍历二叉树算是经典的递归应用了。我们以先序遍历为例,递归版本的代码很容易写:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def preorder_traversal(root): "" " 1 / \ 2 3 / \ \ 4 5 6 "" " if not root: return print(root.val) preorder_traversal(root.lchild) preorder_traversal(root.rchild) |
下面是非递归的版本:
1
2
3
4
5
6
7
8
9
|
def preorder_traversal(root) s = Stack() while s.size or root: if root: print(root.val) s.push(root) root = root.lchild else : root = s.pop().rchild |
总结
以上就是如何用C语言和Python实现栈及典型应用的全部内容,希望对大家的学习有所帮助,也希望大家继续支持服务器之家。