脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - 解决Keras中Embedding层masking与Concatenate层不可调和的问题

解决Keras中Embedding层masking与Concatenate层不可调和的问题

2020-06-19 10:23蕉叉熵 Python

这篇文章主要介绍了解决Keras中Embedding层masking与Concatenate层不可调和的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

问题描述

我在用Keras的Embedding层做nlp相关的实现时,发现了一个神奇的问题,先上代码:

?
1
2
3
4
5
6
7
8
a = Input(shape=[15]) # None*15
b = Input(shape=[30]) # None*30
emb_a = Embedding(10, 5, mask_zero=True)(a) # None*15*5
emb_b = Embedding(20, 5, mask_zero=False)(b) # None*30*5
cat = Concatenate(axis=1)([emb_a, emb_b]) # None*45*5
model = Model(inputs=[a, b], outputs=[cat])
 
print model.summary()

我有两个Embedding层,当其中一个设置mask_zero=True,而另一个为False时,会报如下错误。

ValueError: Dimension 0 in both shapes must be equal, but are 1 and 5.
Shapes are [1] and [5]. for 'concatenate_1/concat_1' (op: 'ConcatV2')
with input shapes: [?,15,1], [?,30,5], [] and with computed input tensors: input[2] = <1>.

什么意思呢?是说在concatenate时发现两个矩阵的第三维一个是1,一个是5,这就很神奇了,加了个mask_zero=True还会改变矩阵维度的吗?

寻找问题根源

为了检验Embedding层输出的正确性,我把代码改成了:

?
1
2
3
a = Input(shape=[30])
...
cat = Concatenate(axis=2)([emb_a, emb_b])

运行成功了,并且summary显示两个Embedding层输出矩阵的第三维都是5。

这就很奇怪了,明明没有改变维度,为什么会报那样的错误?

然后我仔细追溯了一下前面的各项error,发现这么一句:

File ".../keras/layers/merge.py", line 374, in compute_mask
concatenated = K.concatenate(masks, axis=self.axis)

难道是mask的拼接有问题?

于是我修改了/keras/layers/merge.py里的Concatenate类的compute_mask函数(sudo vim就可以修改),在返回前输出一下masks:

?
1
2
3
4
5
def compute_mask(self, inputs, mask=None):
 ...
 for x in masks:
  print x
 return ...

Tensor("concatenate_1/ExpandDims:0", shape=(?, 30, 1), dtype=bool)
Tensor("concatenate_1/Cast:0", shape=(?, 30, 5), dtype=bool)

发现了!有一个叫concatenate_1/ExpandDims:0的mask它的第三维度是1!

那么这个ExpandDims是什么鬼,观察一下compute_mask代码,发现了:

?
1
2
3
4
5
...
elif K.ndim(mask_i) < K.ndim(input_i):
 # Mask is smaller than the input, expand it
 masks.append(K.expand_dims(mask_i))
...

意思是当mask_i的维度比input_i的维度小时,扩展一维,这下知道第三维的1是怎么来的了,那么可以预计compute_mask函数输入的mask尺寸应该是(None, 30),输出一下试试:

?
1
2
3
def compute_mask(self, inputs, mask=None):
 print mask
 ...

[<tf.Tensor 'embedding_1/NotEqual:0' shape=(?, 30) dtype=bool>, None]

果然如此,总结一下问题的所在:

Embedding层的输出会比输入多一维,但Embedding生成的mask的维度与输入一致。在Concatenate中,没有mask的Embedding输出被分配一个与该输出相同维度的全1的mask,比有mask的Embedding的mask多一维。

提出解决方案

那么,Embedding层的mask到底是如何起作用的呢?是直接在Embedding层中起作用,还是在后续的层中起作用呢?纵观embeddings.py,mask_zero只在compute_mask函数被用到:

?
1
2
3
4
5
def compute_mask(self, inputs, mask=None):
 if not self.mask_zero:
  return None
 else:
  return K.not_equal(inputs, 0)

可见,Embedding层的mask是记录了Embedding输入中非零元素的位置,并且传给后面的支持masking的层,在后面的层里起作用。

一种最简单的解决方案:

给所有参与Concatenate的Embedding层都设置mask_zero=True。

但是,我想到了一种更灵活的解决方案:

修改embedding.py的compute_mask函数,使得输出的mask从2维变成3维,且第三维等于output_dim。

?
1
2
3
4
5
6
7
8
9
10
import tensorflow as tf
...
def compute_mask(self, inputs, mask=None):
 if not self.mask_zero:
  return None
 else:
  mask = K.repeat(K.not_equal(inputs, 0), self.output_dim) # [?,output_dim,n]
  mask = tf.transpose(mask, [0,2,1]) # [?,n,output_dim]
  return mask
...

验证解决方案

为了验证这个改动是否正确,我需要设计几个小实验。

实验一:mask的正确性

我把输出的mask做了改动,不知道mask是否是正确的。

如下所示,数据是一个带有3个样本、样本长度最长为3的补零padding过的矩阵,我分别让Embedding层的mask_zero为False和True(为True时input_dim=|va|+2所以是5)。然后分别将Embedding的输出在axis=1用MySumLayer进行求和。为了方便观察,我用keras.initializers.ones()把Embedding层的权值全部初始化为1。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# data
data = np.array([[1,0,0],
     [1,2,0],
     [1,2,3]])
init = keras.initializers.ones()
 
# network
a = Input(shape=[3]) # None*3
emb1 = Embedding(4, 5, embeddings_initializer=init, mask_zero=False)(a) # None*3*5
emb2 = Embedding(5, 5, embeddings_initializer=init, mask_zero=True)(a) # None*3*5
sum1 = MySumLayer(axis=1)(emb1) # None*5
sum2 = MySumLayer(axis=1)(emb2) # None*5
model = Model(inputs=[a], outputs=[sum1, sum2])
 
# prediciton
out = model.predict(data)
for x in out:
 print x

结果如下:

?
1
2
3
4
5
6
7
[[3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]]
 
[[1. 1. 1. 1. 1.]
 [2. 2. 2. 2. 2.]
 [3. 3. 3. 3. 3.]]

这个结果是正确的,这里解释一波:

(1)当mask_True=False时,输入矩阵中的0也会被认为是正确的index,从而从权值矩阵中抽出第0行作为该index的Embedding,而我的权值都是1,因此所有Embedding都是1,对axis=1求和,实际上是对word length这一轴求和,输入的word length最长为3,以致于输出矩阵的元素都是3.

(2)当mask_True=True时,输入矩阵中的0会被mask掉,而这个mask的操作是体现在MySumLayer中的,将输入(3, 3, 5)与mask(3, 3, 5)逐元素相乘,再相加。第一个样本只有一项非零,第二个有两项,第三个三项,因此MySumLayer输出的矩阵,各行元素分别是1,2,3.

另外附上MySumLayer的代码,它的功能是指定一个axis将Tensor进行求和:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from keras import backend as K
from keras.engine.topology import Layer
import tensorflow as tf
 
class MySumLayer(Layer):
 def __init__(self, axis, **kwargs):
  self.supports_masking = True
  self.axis = axis
  super(MySumLayer, self).__init__(**kwargs)
 
 def compute_mask(self, input, input_mask=None):
  # do not pass the mask to the next layers
  return None
 
 def call(self, x, mask=None):
 
  if mask is not None:
   # mask (batch, time)
   mask = K.cast(mask, K.floatx())
   if K.ndim(x)!=K.ndim(mask):
    mask = K.repeat(mask, x.shape[-1])
    mask = tf.transpose(mask, [0,2,1])
   x = x * mask
   return K.sum(x, axis=self.axis)
  else:
   return K.sum(x, axis=self.axis)
 
 def compute_output_shape(self, input_shape):
  # remove temporal dimension
  if self.axis==1:
   return input_shape[0], input_shape[2]
  if self.axis==2:
   return input_shape[0], input_shape[1]

实验二:一个mask_zero=True和一个mask_zero=False的Embedding是否能够拼接

?
1
2
3
4
5
6
7
8
a = Input(shape=[3]) # None*3
b = Input(shape=[4]) # None*4
emba = Embedding(4, 5, embeddings_initializer=init, mask_zero=False)(a) # None*3*5
embb = Embedding(6, 5, embeddings_initializer=init, mask_zero=True)(b) # None*4*5
cat = Concatenate(axis=1)([emba, embb]) # None*7*5
 
model = Model(inputs=[a,b], outputs=[cat])
print model.summary()

没有报错!而且输出的shape正是(None, 7, 5)。

实验三:两个mask_zero=True的Embedding拼接是否会报错

?
1
2
3
4
5
6
7
8
a = Input(shape=[3]) # None*3
b = Input(shape=[4]) # None*4
emba = Embedding(4, 5, embeddings_initializer=init, mask_zero=True)(a) # None*3*5
embb = Embedding(6, 5, embeddings_initializer=init, mask_zero=True)(b) # None*4*5
cat = Concatenate(axis=1)([emba, embb]) # None*7*5
 
model = Model(inputs=[a,b], outputs=[cat])
print model.summary()

没有报错!

实验四:两个mask_zero=True的Embedding拼接结果是否正确

如下所示,第一个矩阵是一个带有4个样本、样本长度最长为3的补零padding过的矩阵,第二个矩阵是一个带有4个样本、样本长度最长为4的补零padding过的矩阵。为什么这里要求样本个数一致呢,因为一般来说需要这种拼接操作的都是同一批样本的不同特征。两者的Embedding都设置mask_zero=True,在axis=1拼接后,用MySumLayer在axis=1加起来。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# data
data1 = np.array([[1,0,0],
     [1,2,0],
     [1,2,3],
     [1,2,3]])
data2 = np.array([[1,0,0,0],
     [1,2,0,0],
     [1,2,3,0],
     [1,2,3,4]])
init = keras.initializers.ones()
 
# network
a = Input(shape=[3]) # None*3
b = Input(shape=[4]) # None*4
emba = Embedding(4, 5, embeddings_initializer=init, mask_zero=True)(a) # None*3*5
embb = Embedding(6, 5, embeddings_initializer=init, mask_zero=True)(b) # None*3*5
 
cat = Concatenate(axis=1)([emba, embb])
su = MySumLayer(axis=1)(cat)
 
model = Model(inputs=[a,b], outputs=[su])
 
# prediction
print model.predict([data1, data2])

输出如下

?
1
2
3
4
[[2. 2. 2. 2. 2.]
 [4. 4. 4. 4. 4.]
 [6. 6. 6. 6. 6.]
 [7. 7. 7. 7. 7.]]

这个结果是正确的,解释一波,其实两个矩阵横向拼接起来是下面这样的,4个样本分别有2、4、6、7个非零index,而Embedding层权值都是1,所以最终输出的就是上面这个样子。

?
1
2
3
4
5
# index
1 0 0 1 0 0 0
1 2 0 1 2 0 0
1 2 3 1 2 3 0
1 2 3 1 2 3 4

至此,问题成功解决了。

以上这篇解决Keras中Embedding层masking与Concatenate层不可调和的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/songbinxu/article/details/80242211

延伸 · 阅读

精彩推荐