参考我之前写的处理图片的文章:Python+OpenCV实现【图片】局部区域像素值处理(改进版)
开发环境:Python3.6.0 + OpenCV3.2.0
任务目标:摄像头采集图像(例如:480640),并对视频流每一帧(灰度图)特定矩形区域(48030)像素值进行行求和,得到一个480*1的数组,用这480个数据绘制条形图,即在逐帧采集视频流并处理后“实时”显示采集到的视频,并“实时”更新条形图。工作流程如下图:
源码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# -*- coding:utf-8 -*- import cv2 import numpy as np camera = cv2.VideoCapture( 0 ) # 参数0表示第一个摄像头 # camera = cv2.VideoCapture("test.avi") # 从文件读取视频 # 判断视频是否打开 if (camera.isOpened()): print 'Open' else : print 'Fail to open!' # # 测试用,查看视频size # size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), # int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) # print 'size:'+repr(size) rectangleCols = 30 while True : grabbed, frame_lwpCV = camera.read() # 逐帧采集视频流 if not grabbed: break gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转灰度图 frame_data = np.array(gray_lwpCV) # 每一帧循环存入数组 box_data = frame_data[:, 400 : 400 + rectangleCols] # 取矩形目标区域 pixel_sum = np. sum (box_data, axis = 1 ) # 行求和q length = len (gray_lwpCV) x = range (length) emptyImage = np.zeros((rectangleCols * 10 , length * 2 , 3 ), np.uint8) for i in x: cv2.rectangle(emptyImage, (i * 2 , (rectangleCols - pixel_sum[i] / 255 ) * 10 ), ((i + 1 ) * 2 , rectangleCols * 10 ), ( 255 , 0 , 0 ), 1 ) emptyImage = cv2.resize(emptyImage, ( 320 , 240 )) # 画目标区域 lwpCV_box = cv2.rectangle(frame_lwpCV, ( 400 , 0 ), ( 430 , length), ( 0 , 255 , 0 ), 2 ) cv2.imshow( 'lwpCVWindow' , frame_lwpCV) # 显示采集到的视频流 cv2.imshow( 'sum' , emptyImage) # 显示画出的条形图 key = cv2.waitKey( 1 ) & 0xFF if key = = ord ( 'q' ): break camera.release() cv2.destroyAllWindows() |
以上就是python环境下OPenCV处理视频流局部区域像素值的详细内容,更多关于OPenCV视频流局部区域像素处理的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/lwplwf/article/details/71155727