python 小猫检测,通过调用opencv自带的猫脸检测的分类器进行检测。
分类器有两个:haarcascade_frontalcatface.xml和
haarcascade_frontalcatface_extended.xml。可以在opencv的安装目录下找到
d:\program files\opencv320\opencv\sources\data\haarcascades
小猫检测代码为:
1. 直接读取图片调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import cv2 image = cv2.imread( "cat_04.png" ) gray = cv2.cvtcolor(image, cv2.color_bgr2gray) # load the cat detector haar cascade, then detect cat faces # in the input image detector = cv2.cascadeclassifier( "haarcascade_frontalcatface.xml" ) #haarcascade_frontalcatface_extended.xml rects = detector.detectmultiscale(gray, scalefactor = 1.1 , minneighbors = 10 , minsize = ( 100 , 100 )) # loop over the cat faces and draw a rectangle surrounding each print ( enumerate (rects)) for (i, (x, y, w, h)) in enumerate (rects): cv2.rectangle(image, (x, y), (x + w, y + h), ( 0 , 0 , 255 ), 2 ) cv2.puttext(image, "cat #{}" . format (i + 1 ), (x, y - 10 ), cv2.font_hershey_simplex, 0.55 , ( 0 , 0 , 255 ), 2 ) print (i, x,y,w,h) # show the detected cat faces cv2.imshow( "cat faces" , image) cv2.waitkey( 1 ) |
检测效果:
2. 通过命令控制符调用
也可以通过调用argparse库,进行整体调用
新建cat_detect.py文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
# import the necessary packages import argparse import cv2 # construct the argument parse and parse the arguments ap = argparse.argumentparser() ap.add_argument( "-i" , "--image" , required = true, help = "path to the input image" ) ap.add_argument( "-c" , "--cascade" , default = "haarcascade_frontalcatface_extended.xml" , help = "path to cat detector haar cascade" ) args = vars (ap.parse_args()) #"haarcascade_frontalcatface_extended.xml", # load the input image and convert it to grayscale #image = cv2.imread(args["image"]) image = cv2.imread(args[ "image" ]) gray = cv2.cvtcolor(image, cv2.color_bgr2gray) # load the cat detector haar cascade, then detect cat faces # in the input image detector = cv2.cascadeclassifier(args[ "cascade" ]) rects = detector.detectmultiscale(gray, scalefactor = 1.1 , minneighbors = 10 , minsize = ( 120 , 120 )) # cat good # loop over the cat faces and draw a rectangle surrounding each print ( enumerate (rects)) for (i, (x, y, w, h)) in enumerate (rects): cv2.rectangle(image, (x, y), (x + w, y + h), ( 0 , 0 , 255 ), 2 ) cv2.puttext(image, "cat #{}" . format (i + 1 ), (x, y - 10 ), cv2.font_hershey_simplex, 0.55 , ( 0 , 0 , 255 ), 2 ) # show the detected cat faces cv2.imshow( "cat faces" , image) cv2.waitkey( 0 ) |
通过“命令控制符”调用
1
2
3
|
cmd cd e:\work\py\detectcat e:\work\py\detectcat>python cat_detector.py - - image cat_07.png |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xiao_lxl/article/details/77191145