本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下
python+opencv实现高斯平滑滤波
python+opencv实现阈值分割
功能:
创建一个滑动条来控制检测直线的长度阈值,即大于该阈值的检测出来,小于该阈值的忽略
注意:这里用的函数是HoughLinesP而不是HoughLines,因为HoughLinesP直接给出了直线的断点,在画出线段的时候可以偷懒
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# -*- coding: utf-8 -*- import cv2 #两个回调函数 def HoughLinesP(minLineLength): global minLINELENGTH minLINELENGTH = minLineLength + 1 print "minLINELENGTH:" ,minLineLength + 1 tempIamge = scr.copy() lines = cv2.HoughLinesP( edges, 1 , cv2.cv.CV_PI / 180 , minLINELENGTH, 0 ) for x1,y1,x2,y2 in lines[ 0 ]: cv2.line(tempIamge,(x1,y1),(x2,y2),( 0 , 255 , 0 ), 1 ) cv2.imshow(window_name,tempIamge) #临时变量 minLineLength = 20 #全局变量 minLINELENGTH = 20 max_value = 100 window_name = "HoughLines Demo" trackbar_value = "minLineLength" #读入图片,模式为灰度图,创建窗口 scr = cv2.imread( "G:\homework\building.bmp" ) gray = cv2.cvtColor(scr,cv2.COLOR_BGR2GRAY) img = cv2.GaussianBlur(gray,( 3 , 3 ), 0 ) edges = cv2.Canny(img, 50 , 150 , apertureSize = 3 ) cv2.namedWindow(window_name) #创建滑动条 cv2.createTrackbar( trackbar_value, window_name, minLineLength, max_value, HoughLinesP) #初始化 HoughLinesP( 20 ) if cv2.waitKey( 0 ) = = 27 : cv2.destroyAllWindows() |
调用:
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> import os >>> os.chdir( "g:homework" ) >>> >>> import HoughLines minLINELENGTH: 20 minLINELENGTH: 21 minLINELENGTH: 22 minLINELENGTH: 23 minLINELENGTH: 25 minLINELENGTH: 26 minLINELENGTH: 27 minLINELENGTH: 28 |
效果图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xieyi4650/article/details/51361675