脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - PyTorch快速搭建神经网络及其保存提取方法详解

PyTorch快速搭建神经网络及其保存提取方法详解

2021-02-07 00:29marsjhao Python

本篇文章主要介绍了PyTorch快速搭建神经网络及其保存提取方法详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解

一、PyTorch快速搭建神经网络方法

先看实验代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn.functional as F
 
# 方法1,通过定义一个Net类来建立神经网络
class Net(torch.nn.Module):
  def __init__(self, n_feature, n_hidden, n_output):
    super(Net, self).__init__()
    self.hidden = torch.nn.Linear(n_feature, n_hidden)
    self.predict = torch.nn.Linear(n_hidden, n_output)
 
  def forward(self, x):
    x = F.relu(self.hidden(x))
    x = self.predict(x)
    return x
 
net1 = Net(2, 10, 2)
print('方法1:\n', net1)
 
# 方法2 通过torch.nn.Sequential快速建立神经网络结构
net2 = torch.nn.Sequential(
  torch.nn.Linear(2, 10),
  torch.nn.ReLU(),
  torch.nn.Linear(10, 2),
  )
print('方法2:\n', net2)
# 经验证,两种方法构建的神经网络功能相同,结构细节稍有不同
 
'''''
方法1:
 Net (
 (hidden): Linear (2 -> 10)
 (predict): Linear (10 -> 2)
)
方法2:
 Sequential (
 (0): Linear (2 -> 10)
 (1): ReLU ()
 (2): Linear (10 -> 2)
)
'''

先前学习了通过定义一个Net类来构建神经网络的方法,classNet中首先通过super函数继承torch.nn.Module模块的构造方法,再通过添加属性的方式搭建神经网络各层的结构信息,在forward方法中完善神经网络各层之间的连接信息,然后再通过定义Net类对象的方式完成对神经网络结构的构建。

构建神经网络的另一个方法,也可以说是快速构建方法,就是通过torch.nn.Sequential,直接完成对神经网络的建立。

两种方法构建得到的神经网络结构完全相同,都可以通过print函数来打印输出网络信息,不过打印结果会有些许不同。

二、PyTorch的神经网络保存和提取

在学习和研究深度学习的时候,当我们通过一定时间的训练,得到了一个比较好的模型的时候,我们当然希望将这个模型及模型参数保存下来,以备后用,所以神经网络的保存和模型参数提取重载是很有必要的。

首先,我们需要在需要保存网路结构及其模型参数的神经网络的定义、训练部分之后通过torch.save()实现对网络结构和模型参数的保存。有两种保存方式:一是保存年整个神经网络的的结构信息和模型参数信息,save的对象是网络net;二是只保存神经网络的训练模型参数,save的对象是net.state_dict(),保存结果都以.pkl文件形式存储。

对应上面两种保存方式,重载方式也有两种。对应第一种完整网络结构信息,重载的时候通过torch.load(‘.pkl')直接初始化新的神经网络对象即可。对应第二种只保存模型参数信息,需要首先搭建相同的神经网络结构,通过net.load_state_dict(torch.load('.pkl'))完成模型参数的重载。在网络比较大的时候,第一种方法会花费较多的时间。

代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
 
torch.manual_seed(1) # 设定随机数种子
 
# 创建数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
 
# 将待保存的神经网络定义在一个函数中
def save():
  # 神经网络结构
  net1 = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1),
    )
  optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
  loss_function = torch.nn.MSELoss()
 
  # 训练部分
  for i in range(300):
    prediction = net1(x)
    loss = loss_function(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
 
  # 绘图部分
  plt.figure(1, figsize=(10, 3))
  plt.subplot(131)
  plt.title('net1')
  plt.scatter(x.data.numpy(), y.data.numpy())
  plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
 
  # 保存神经网络
  torch.save(net1, '7-net.pkl')           # 保存整个神经网络的结构和模型参数
  torch.save(net1.state_dict(), '7-net_params.pkl') # 只保存神经网络的模型参数
 
# 载入整个神经网络的结构及其模型参数
def reload_net():
  net2 = torch.load('7-net.pkl')
  prediction = net2(x)
 
  plt.subplot(132)
  plt.title('net2')
  plt.scatter(x.data.numpy(), y.data.numpy())
  plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
 
# 只载入神经网络的模型参数,神经网络的结构需要与保存的神经网络相同的结构
def reload_params():
  # 首先搭建相同的神经网络结构
  net3 = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1),
    )
 
  # 载入神经网络的模型参数
  net3.load_state_dict(torch.load('7-net_params.pkl'))
  prediction = net3(x)
 
  plt.subplot(133)
  plt.title('net3')
  plt.scatter(x.data.numpy(), y.data.numpy())
  plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
 
# 运行测试
save()
reload_net()
reload_params()

实验结果:

PyTorch快速搭建神经网络及其保存提取方法详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/marsjhao/article/details/72046803

延伸 · 阅读

精彩推荐