本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
from numpy import array, append, vstack, transpose, reshape, \ dot, true_divide, mean, exp, sqrt, log, \ loadtxt, savetxt, zeros, frombuffer from numpy.linalg import norm, lstsq from multiprocessing import Process, Array from random import sample from time import time from sys import stdout from ctypes import c_double from h5py import File def metrics(a, b): return norm(a - b) def gaussian (x, mu, sigma): return exp( - metrics(mu, x) * * 2 / ( 2 * sigma * * 2 )) def multiQuadric (x, mu, sigma): return pow (metrics(mu,x) * * 2 + sigma * * 2 , 0.5 ) def invMultiQuadric (x, mu, sigma): return pow (metrics(mu,x) * * 2 + sigma * * 2 , - 0.5 ) def plateSpine (x,mu): r = metrics(mu,x) return (r * * 2 ) * log(r) class Rbf: def __init__( self , prefix = 'rbf' , workers = 4 , extra_neurons = 0 , from_files = None ): self .prefix = prefix self .workers = workers self .extra_neurons = extra_neurons # Import partial model if from_files is not None : w_handle = self .w_handle = File (from_files[ 'w' ], 'r' ) mu_handle = self .mu_handle = File (from_files[ 'mu' ], 'r' ) sigma_handle = self .sigma_handle = File (from_files[ 'sigma' ], 'r' ) self .w = w_handle[ 'w' ] self .mu = mu_handle[ 'mu' ] self .sigmas = sigma_handle[ 'sigmas' ] self .neurons = self .sigmas.shape[ 0 ] def _calculate_error( self , y): self .error = mean( abs ( self .os - y)) self .relative_error = true_divide( self .error, mean(y)) def _generate_mu( self , x): n = self .n extra_neurons = self .extra_neurons # TODO: Make reusable mu_clusters = loadtxt( 'clusters100.txt' , delimiter = '\t' ) mu_indices = sample( range (n), extra_neurons) mu_new = x[mu_indices, :] mu = vstack((mu_clusters, mu_new)) return mu def _calculate_sigmas( self ): neurons = self .neurons mu = self .mu sigmas = zeros((neurons, )) for i in xrange (neurons): dists = [ 0 for _ in xrange (neurons)] for j in xrange (neurons): if i ! = j: dists[j] = metrics(mu[i], mu[j]) sigmas[i] = mean(dists) * 2 # max(dists) / sqrt(neurons * 2)) return sigmas def _calculate_phi( self , x): C = self .workers neurons = self .neurons mu = self .mu sigmas = self .sigmas phi = self .phi = None n = self .n def heavy_lifting(c, phi): s = jobs[c][ 1 ] - jobs[c][ 0 ] for k, i in enumerate ( xrange (jobs[c][ 0 ], jobs[c][ 1 ])): for j in xrange (neurons): # phi[i, j] = metrics(x[i,:], mu[j])**3) # phi[i, j] = plateSpine(x[i,:], mu[j])) # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j])) phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j]) # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j])) if k % 1000 = = 0 : percent = true_divide(k, s) * 100 print (c, ': {:2.2f}%' . format (percent)) print (c, ': Done' ) # distributing the work between 4 workers shared_array = Array(c_double, n * neurons) phi = frombuffer(shared_array.get_obj()) phi = phi.reshape((n, neurons)) jobs = [] workers = [] p = n / C m = n % C for c in range (C): jobs.append((c * p, (c + 1 ) * p + (m if c = = C - 1 else 0 ))) worker = Process(target = heavy_lifting, args = (c, phi)) workers.append(worker) worker.start() for worker in workers: worker.join() return phi def _do_algebra( self , y): phi = self .phi w = lstsq(phi, y)[ 0 ] os = dot(w, transpose(phi)) return w, os # Saving to HDF5 os_h5 = os_handle.create_dataset( 'os' , data = os) def train( self , x, y): self .n = x.shape[ 0 ] ## Initialize HDF5 caches prefix = self .prefix postfix = str ( self .n) + '-' + str ( self .extra_neurons) + '.hdf5' name_template = prefix + '-{}-' + postfix phi_handle = self .phi_handle = File (name_template. format ( 'phi' ), 'w' ) os_handle = self .w_handle = File (name_template. format ( 'os' ), 'w' ) w_handle = self .w_handle = File (name_template. format ( 'w' ), 'w' ) mu_handle = self .mu_handle = File (name_template. format ( 'mu' ), 'w' ) sigma_handle = self .sigma_handle = File (name_template. format ( 'sigma' ), 'w' ) ## Mu generation mu = self .mu = self ._generate_mu(x) self .neurons = mu.shape[ 0 ] print ( '({} neurons)' . format ( self .neurons)) # Save to HDF5 mu_h5 = mu_handle.create_dataset( 'mu' , data = mu) ## Sigma calculation print ( 'Calculating Sigma...' ) sigmas = self .sigmas = self ._calculate_sigmas() # Save to HDF5 sigmas_h5 = sigma_handle.create_dataset( 'sigmas' , data = sigmas) print ( 'Done' ) ## Phi calculation print ( 'Calculating Phi...' ) phi = self .phi = self ._calculate_phi(x) print ( 'Done' ) # Saving to HDF5 print ( 'Serializing...' ) phi_h5 = phi_handle.create_dataset( 'phi' , data = phi) del phi self .phi = phi_h5 print ( 'Done' ) ## Algebra print ( 'Doing final algebra...' ) w, os = self .w, _ = self ._do_algebra(y) # Saving to HDF5 w_h5 = w_handle.create_dataset( 'w' , data = w) os_h5 = os_handle.create_dataset( 'os' , data = os) ## Calculate error self ._calculate_error(y) print ( 'Done' ) def predict( self , test_data): mu = self .mu = self .mu.value sigmas = self .sigmas = self .sigmas.value w = self .w = self .w.value print ( 'Calculating phi for test data...' ) phi = self ._calculate_phi(test_data) os = dot(w, transpose(phi)) savetxt( 'iok3834.txt' , os, delimiter = '\n' ) return os @property def summary( self ): return '\n' .join( \ [ '-----------------' , 'Training set size: {}' . format ( self .n), 'Hidden layer size: {}' . format ( self .neurons), '-----------------' , 'Absolute error : {:02.2f}' . format ( self .error), 'Relative error : {:02.2f}%' . format ( self .relative_error * 100 )]) def predict(test_data): mu = File ( 'rbf-mu-212243-2400.hdf5' , 'r' )[ 'mu' ].value sigmas = File ( 'rbf-sigma-212243-2400.hdf5' , 'r' )[ 'sigmas' ].value w = File ( 'rbf-w-212243-2400.hdf5' , 'r' )[ 'w' ].value n = test_data.shape[ 0 ] neur = mu.shape[ 0 ] mu = transpose(mu) mu.reshape((n, neur)) phi = zeros((n, neur)) for i in range (n): for j in range (neur): phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j]) os = dot(w, transpose(phi)) savetxt( 'iok3834.txt' , os, delimiter = '\n' ) return os |
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://www.cnblogs.com/hhh5460/p/4319654.html