先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4
RabbitMQ服务器
1
|
sudo apt-get install rabbitmq-server |
Python使用RabbitMQ需要Pika库
1
|
sudo pip install pika |
远程结果返回
消息发送端发送消息出去后没有结果返回。如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端。
处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队列用来接收返回的结果。其实在这里接收端、发送端的概念已经比较模糊了,因为发送端也同样要接收消息,接收端同样也要发送消息,所以这里笔者使用另外的示例来演示这一过程。
示例内容:假设有一个控制中心和一个计算节点,控制中心会将一个自然数N发送给计算节点,计算节点将N值加1后,返回给控制中心。这里用center.py模拟控制中心,compute.py模拟计算节点。
compute.py代码分析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
#!/usr/bin/env python #coding=utf8 import pika #连接rabbitmq服务器 connection = pika.BlockingConnection(pika.ConnectionParameters( host = 'localhost' )) channel = connection.channel() #定义队列 channel.queue_declare(queue = 'compute_queue' ) print ' [*] Waiting for n' #将n值加1 def increase(n): return n + 1 #定义接收到消息的处理方法 def request(ch, method, properties, body): print " [.] increase(%s)" % (body,) response = increase( int (body)) #将计算结果发送回控制中心 ch.basic_publish(exchange = '', routing_key = properties.reply_to, body = str (response)) ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count = 1 ) channel.basic_consume(request, queue = 'compute_queue' ) channel.start_consuming() |
计算节点的代码比较简单,值得一提的是,原来的接收方法都是直接将消息打印出来,这边进行了加一的计算,并将结果发送回控制中心。
center.py代码分析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
#!/usr/bin/env python #coding=utf8 import pika class Center( object ): def __init__( self ): self .connection = pika.BlockingConnection(pika.ConnectionParameters( host = 'localhost' )) self .channel = self .connection.channel() #定义接收返回消息的队列 result = self .channel.queue_declare(exclusive = True ) self .callback_queue = result.method.queue self .channel.basic_consume( self .on_response, no_ack = True , queue = self .callback_queue) #定义接收到返回消息的处理方法 def on_response( self , ch, method, props, body): self .response = body def request( self , n): self .response = None #发送计算请求,并声明返回队列 self .channel.basic_publish(exchange = '', routing_key = 'compute_queue' , properties = pika.BasicProperties( reply_to = self .callback_queue, ), body = str (n)) #接收返回的数据 while self .response is None : self .connection.process_data_events() return int ( self .response) center = Center() print " [x] Requesting increase(30)" response = center.request( 30 ) print " [.] Got %r" % (response,) |
上例代码定义了接收返回数据的队列和处理方法,并且在发送请求的时候将该队列赋值给reply_to,在计算节点代码中就是通过这个参数来获取返回队列的。
打开两个终端,一个运行代码python compute.py,另外一个终端运行center.py,如果执行成功,应该就能看到效果了。
笔者在测试的时候,出了些小问题,就是在center.py发送消息时没有指明返回队列,结果compute.py那边在计算完结果要发回数据时报错,提示routing_key不存在,再次运行也报错。用rabbitmqctl list_queues查看队列,发现compute_queue队列有1条数据,每次重新运行compute.py的时候,都会重新处理这条数据。后来使用/etc/init.d/rabbitmq-server restart重新启动下rabbitmq就ok了。
相互关联编号correlation id
上一遍演示了远程结果返回的示例,但是有一个没有提到,就是correlation id,这个是个什么东东呢?
假设有多个计算节点,控制中心开启多个线程,往这些计算节点发送数字,要求计算结果并返回,但是控制中心只开启了一个队列,所有线程都是从这个队列里获取消息,每个线程如何确定收到的消息就是该线程对应的呢?这个就是correlation id的用处了。correlation翻译成中文就是相互关联,也表达了这个意思。
correlation id运行原理:控制中心发送计算请求时设置correlation id,而后计算节点将计算结果,连同接收到的correlation id一起返回,这样控制中心就能通过correlation id来标识请求。其实correlation id也可以理解为请求的唯一标识码。
示例内容:控制中心开启多个线程,每个线程都发起一次计算请求,通过correlation id,每个线程都能准确收到相应的计算结果。
compute.py代码分析
和上面一篇相比,只需修改一个地方:将计算结果发送回控制中心时,增加参数correlation_id的设定,该参数的值其实是从控制中心发送过来的,这里只是再次发送回去。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#!/usr/bin/env python #coding=utf8 import pika #连接rabbitmq服务器 connection = pika.BlockingConnection(pika.ConnectionParameters( host = 'localhost' )) channel = connection.channel() #定义队列 channel.queue_declare(queue = 'compute_queue' ) print ' [*] Waiting for n' #将n值加1 def increase(n): return n + 1 #定义接收到消息的处理方法 def request(ch, method, props, body): print " [.] increase(%s)" % (body,) response = increase( int (body)) #将计算结果发送回控制中心,增加correlation_id的设定 ch.basic_publish(exchange = '', routing_key = props.reply_to, properties = pika.BasicProperties(correlation_id = \ props.correlation_id), body = str (response)) ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count = 1 ) channel.basic_consume(request, queue = 'compute_queue' ) channel.start_consuming() |
center.py代码分析
控制中心代码稍微复杂些,其中比较关键的有三个地方:
使用python的uuid来产生唯一的correlation_id。
发送计算请求时,设定参数correlation_id。
定义一个字典来保存返回的数据,并且键值为相应线程产生的correlation_id。
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
#!/usr/bin/env python #coding=utf8 import pika, threading, uuid #自定义线程类,继承threading.Thread class MyThread(threading.Thread): def __init__( self , func, num): super (MyThread, self ).__init__() self .func = func self .num = num def run( self ): print " [x] Requesting increase(%d)" % self .num response = self .func( self .num) print " [.] increase(%d)=%d" % ( self .num, response) #控制中心类 class Center( object ): def __init__( self ): self .connection = pika.BlockingConnection(pika.ConnectionParameters( host = 'localhost' )) self .channel = self .connection.channel() #定义接收返回消息的队列 result = self .channel.queue_declare(exclusive = True ) self .callback_queue = result.method.queue self .channel.basic_consume( self .on_response, no_ack = True , queue = self .callback_queue) #返回的结果都会存储在该字典里 self .response = {} #定义接收到返回消息的处理方法 def on_response( self , ch, method, props, body): self .response[props.correlation_id] = body def request( self , n): corr_id = str (uuid.uuid4()) self .response[corr_id] = None #发送计算请求,并设定返回队列和correlation_id self .channel.basic_publish(exchange = '', routing_key = 'compute_queue' , properties = pika.BasicProperties( reply_to = self .callback_queue, correlation_id = corr_id, ), body = str (n)) #接收返回的数据 while self .response[corr_id] is None : self .connection.process_data_events() return int ( self .response[corr_id]) center = Center() #发起5次计算请求 nums = [ 10 , 20 , 30 , 40 , 50 ] threads = [] for num in nums: threads.append(MyThread(center.request, num)) for thread in threads: thread.start() for thread in threads: thread.join() |
笔者开启了两个终端,来运行compute.py,开启一个终端来运行center.py,最后结果输出截图如下:
可以看到虽然获取的结果不是顺序输出,但是结果和源数据都是对应的。
这边示例的做法就是创建一个队列,使用correlation id来标识每次请求。也有做法可以不使用correlation id,就是每请求一次,就创建一个临时队列,不过这样太消耗性能了,官方也不推荐这么做。