model.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
#!/usr/bin/python # -*- coding: utf-8 -*- import torch from torch import nn import numpy as np from torch.autograd import Variable import torch.nn.functional as F class TextRNN(nn.Module): """文本分类,RNN模型""" def __init__( self ): super (TextRNN, self ).__init__() # 三个待输入的数据 self .embedding = nn.Embedding( 5000 , 64 ) # 进行词嵌入 # self.rnn = nn.LSTM(input_size=64, hidden_size=128, num_layers=2, bidirectional=True) self .rnn = nn.GRU(input_size = 64 , hidden_size = 128 , num_layers = 2 , bidirectional = True ) self .f1 = nn.Sequential(nn.Linear( 256 , 128 ), nn.Dropout( 0.8 ), nn.ReLU()) self .f2 = nn.Sequential(nn.Linear( 128 , 10 ), nn.Softmax()) def forward( self , x): x = self .embedding(x) x,_ = self .rnn(x) x = F.dropout(x,p = 0.8 ) x = self .f1(x[:, - 1 ,:]) return self .f2(x) class TextCNN(nn.Module): def __init__( self ): super (TextCNN, self ).__init__() self .embedding = nn.Embedding( 5000 , 64 ) self .conv = nn.Conv1d( 64 , 256 , 5 ) self .f1 = nn.Sequential(nn.Linear( 256 * 596 , 128 ), nn.ReLU()) self .f2 = nn.Sequential(nn.Linear( 128 , 10 ), nn.Softmax()) def forward( self , x): x = self .embedding(x) x = x.detach().numpy() x = np.transpose(x,[ 0 , 2 , 1 ]) x = torch.Tensor(x) x = Variable(x) x = self .conv(x) x = x.view( - 1 , 256 * 596 ) x = self .f1(x) return self .f2(x) |
train.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
# coding: utf-8 from __future__ import print_function import torch from torch import nn from torch import optim from torch.autograd import Variable import os import numpy as np from model import TextRNN,TextCNN from cnews_loader import read_vocab, read_category, batch_iter, process_file, build_vocab base_dir = 'cnews' train_dir = os.path.join(base_dir, 'cnews.train.txt' ) test_dir = os.path.join(base_dir, 'cnews.test.txt' ) val_dir = os.path.join(base_dir, 'cnews.val.txt' ) vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt' ) def train(): x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, 600 ) #获取训练数据每个字的id和对应标签的oe-hot形式 x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, 600 ) #使用LSTM或者CNN model = TextRNN() # model = TextCNN() #选择损失函数 Loss = nn.MultiLabelSoftMarginLoss() # Loss = nn.BCELoss() # Loss = nn.MSELoss() optimizer = optim.Adam(model.parameters(),lr = 0.001 ) best_val_acc = 0 for epoch in range ( 1000 ): batch_train = batch_iter(x_train, y_train, 100 ) for x_batch, y_batch in batch_train: x = np.array(x_batch) y = np.array(y_batch) x = torch.LongTensor(x) y = torch.Tensor(y) # y = torch.LongTensor(y) x = Variable(x) y = Variable(y) out = model(x) loss = Loss(out,y) optimizer.zero_grad() loss.backward() optimizer.step() accracy = np.mean((torch.argmax(out, 1 ) = = torch.argmax(y, 1 )).numpy()) #对模型进行验证 if (epoch + 1 ) % 20 = = 0 : batch_val = batch_iter(x_val, y_val, 100 ) for x_batch, y_batch in batch_train: x = np.array(x_batch) y = np.array(y_batch) x = torch.LongTensor(x) y = torch.Tensor(y) # y = torch.LongTensor(y) x = Variable(x) y = Variable(y) out = model(x) loss = Loss(out, y) optimizer.zero_grad() loss.backward() optimizer.step() accracy = np.mean((torch.argmax(out, 1 ) = = torch.argmax(y, 1 )).numpy()) if accracy > best_val_acc: torch.save(model.state_dict(), 'model_params.pkl' ) best_val_acc = accracy print (accracy) if __name__ = = '__main__' : #获取文本的类别及其对应id的字典 categories, cat_to_id = read_category() #获取训练文本中所有出现过的字及其所对应的id words, word_to_id = read_vocab(vocab_dir) #获取字数 vocab_size = len (words) train() |
test.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
# coding: utf-8 from __future__ import print_function import os import tensorflow.contrib.keras as kr import torch from torch import nn from cnews_loader import read_category, read_vocab from model import TextRNN from torch.autograd import Variable import numpy as np try : bool ( type ( unicode )) except NameError: unicode = str base_dir = 'cnews' vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt' ) class TextCNN(nn.Module): def __init__( self ): super (TextCNN, self ).__init__() self .embedding = nn.Embedding( 5000 , 64 ) self .conv = nn.Conv1d( 64 , 256 , 5 ) self .f1 = nn.Sequential(nn.Linear( 152576 , 128 ), nn.ReLU()) self .f2 = nn.Sequential(nn.Linear( 128 , 10 ), nn.Softmax()) def forward( self , x): x = self .embedding(x) x = x.detach().numpy() x = np.transpose(x,[ 0 , 2 , 1 ]) x = torch.Tensor(x) x = Variable(x) x = self .conv(x) x = x.view( - 1 , 152576 ) x = self .f1(x) return self .f2(x) class CnnModel: def __init__( self ): self .categories, self .cat_to_id = read_category() self .words, self .word_to_id = read_vocab(vocab_dir) self .model = TextCNN() self .model.load_state_dict(torch.load( 'model_params.pkl' )) def predict( self , message): # 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行 content = unicode (message) data = [ self .word_to_id[x] for x in content if x in self .word_to_id] data = kr.preprocessing.sequence.pad_sequences([data], 600 ) data = torch.LongTensor(data) y_pred_cls = self .model(data) class_index = torch.argmax(y_pred_cls[ 0 ]).item() return self .categories[class_index] class RnnModel: def __init__( self ): self .categories, self .cat_to_id = read_category() self .words, self .word_to_id = read_vocab(vocab_dir) self .model = TextRNN() self .model.load_state_dict(torch.load( 'model_rnn_params.pkl' )) def predict( self , message): # 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行 content = unicode (message) data = [ self .word_to_id[x] for x in content if x in self .word_to_id] data = kr.preprocessing.sequence.pad_sequences([data], 600 ) data = torch.LongTensor(data) y_pred_cls = self .model(data) class_index = torch.argmax(y_pred_cls[ 0 ]).item() return self .categories[class_index] if __name__ = = '__main__' : model = CnnModel() # model = RnnModel() test_demo = [ '湖人助教力助科比恢复手感 他也是阿泰的精神导师新浪体育讯记者戴高乐报道 上赛季,科比的右手食指遭遇重创,他的投篮手感也因此大受影响。不过很快科比就调整了自己的投篮手型,并通过这一方式让自己的投篮命中率回升。而在这科比背后,有一位特别助教对科比帮助很大,他就是查克·珀森。珀森上赛季担任湖人的特别助教,除了帮助科比调整投篮手型之外,他的另一个重要任务就是担任阿泰的精神导师。来到湖人队之后,阿泰收敛起了暴躁的脾气,成为湖人夺冠路上不可或缺的一员,珀森的“心灵按摩”功不可没。经历了上赛季的成功之后,珀森本赛季被“升职”成为湖人队的全职助教,每场比赛,他都会坐在球场边,帮助禅师杰克逊一起指挥湖人球员在场上拼杀。对于珀森的工作,禅师非常欣赏,“查克非常善于分析问题,”菲尔·杰克逊说,“他总是在寻找问题的答案,同时也在找造成这一问题的原因,这是我们都非常乐于看到的。我会在平时把防守中出现的一些问题交给他,然后他会通过组织球员练习找到解决的办法。他在球员时代曾是一名很好的外线投手,不过现在他与内线球员的配合也相当不错。' , '弗老大被裁美国媒体看热闹“特权”在中国像蠢蛋弗老大要走了。虽然他只在首钢男篮效力了13天,而且表现毫无亮点,大大地让球迷和俱乐部失望了,但就像中国人常说的“好聚好散”,队友还是友好地与他告别,俱乐部与他和平分手,球迷还请他留下了在北京的最后一次签名。相比之下,弗老大的同胞美国人却没那么“宽容”。他们嘲讽这位NBA前巨星的英雄迟暮,批评他在CBA的业余表现,还惊讶于中国人的“大方”。今天,北京首钢俱乐部将与弗朗西斯继续商讨解约一事。从昨日的进展来看,双方可以做到“买卖不成人意在”,但回到美国后,恐怕等待弗朗西斯的就没有这么轻松的环境了。进展@北京昨日与队友告别 最后一次为球迷签名弗朗西斯在13天里为首钢队打了4场比赛,3场的得分为0,只有一场得了2分。昨天是他来到北京的第14天,虽然他与首钢还未正式解约,但双方都明白“缘分已尽”。下午,弗朗西斯来到首钢俱乐部与队友们告别。弗朗西斯走到队友身边,依次与他们握手拥抱。“你们都对我很好,安排的条件也很好,我很喜欢这支球队,想融入你们,但我现在真的很不适应。希望你们' ] for i in test_demo: print (i, ":" ,model.predict(i)) |
cnews_loader.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
# coding: utf-8 import sys from collections import Counter import numpy as np import tensorflow.contrib.keras as kr if sys.version_info[ 0 ] > 2 : is_py3 = True else : reload (sys) sys.setdefaultencoding( "utf-8" ) is_py3 = False def native_word(word, encoding = 'utf-8' ): """如果在python2下面使用python3训练的模型,可考虑调用此函数转化一下字符编码""" if not is_py3: return word.encode(encoding) else : return word def native_content(content): if not is_py3: return content.decode( 'utf-8' ) else : return content def open_file(filename, mode = 'r' ): """ 常用文件操作,可在python2和python3间切换. mode: 'r' or 'w' for read or write """ if is_py3: return open (filename, mode, encoding = 'utf-8' , errors = 'ignore' ) else : return open (filename, mode) def read_file(filename): """读取文件数据""" contents, labels = [], [] with open_file(filename) as f: for line in f: try : label, content = line.strip().split( '\t' ) if content: contents.append( list (native_content(content))) labels.append(native_content(label)) except : pass return contents, labels def build_vocab(train_dir, vocab_dir, vocab_size = 5000 ): """根据训练集构建词汇表,存储""" data_train, _ = read_file(train_dir) all_data = [] for content in data_train: all_data.extend(content) counter = Counter(all_data) count_pairs = counter.most_common(vocab_size - 1 ) words, _ = list ( zip ( * count_pairs)) # 添加一个 <PAD> 来将所有文本pad为同一长度 words = [ '<PAD>' ] + list (words) open_file(vocab_dir, mode = 'w' ).write( '\n' .join(words) + '\n' ) def read_vocab(vocab_dir): """读取词汇表""" # words = open_file(vocab_dir).read().strip().split('\n') with open_file(vocab_dir) as fp: # 如果是py2 则每个值都转化为unicode words = [native_content(_.strip()) for _ in fp.readlines()] word_to_id = dict ( zip (words, range ( len (words)))) return words, word_to_id def read_category(): """读取分类目录,固定""" categories = [ '体育' , '财经' , '房产' , '家居' , '教育' , '科技' , '时尚' , '时政' , '游戏' , '娱乐' ] categories = [native_content(x) for x in categories] cat_to_id = dict ( zip (categories, range ( len (categories)))) return categories, cat_to_id def to_words(content, words): """将id表示的内容转换为文字""" return ''.join(words[x] for x in content) def process_file(filename, word_to_id, cat_to_id, max_length = 600 ): """将文件转换为id表示""" contents, labels = read_file(filename) #读取训练数据的每一句话及其所对应的类别 data_id, label_id = [], [] for i in range ( len (contents)): data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id]) #将每句话id化 label_id.append(cat_to_id[labels[i]]) #每句话对应的类别的id # # # 使用keras提供的pad_sequences来将文本pad为固定长度 x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length) y_pad = kr.utils.to_categorical(label_id, num_classes = len (cat_to_id)) # 将标签转换为one-hot表示 # return x_pad, y_pad def batch_iter(x, y, batch_size = 64 ): """生成批次数据""" data_len = len (x) num_batch = int ((data_len - 1 ) / batch_size) + 1 indices = np.random.permutation(np.arange(data_len)) x_shuffle = x[indices] y_shuffle = y[indices] for i in range (num_batch): start_id = i * batch_size end_id = min ((i + 1 ) * batch_size, data_len) yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id] |
以上这篇pytorch实现用CNN和LSTM对文本进行分类方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weixin_38241876/article/details/90606639