为了解决传统RNN无法长时依赖问题,RNN的两个变体LSTM和GRU被引入。
LSTM
Long Short Term Memory,称为长短期记忆网络,意思就是长的短时记忆,其解决的仍然是短时记忆问题,这种短时记忆比较长,能一定程度上解决长时依赖。
上图为LSTM的抽象结构,LSTM由3个门来控制,分别是输入门、遗忘门和输出门。输入门控制网络的输入,遗忘门控制着记忆单元,输出门控制着网络的输出。最为重要的就是遗忘门,可以决定哪些记忆被保留,由于遗忘门的作用,使得LSTM具有长时记忆的功能。对于给定的任务,遗忘门能够自主学习保留多少之前的记忆,网络能够自主学习。
具体看LSTM单元的内部结构:
在每篇文章中,作者都会使用和标准LSTM稍微不同的版本,针对特定的任务,特定的网络结构往往表现更好。
GRU
上述的过程的线性变换没有使用偏置。隐藏状态参数不再是标准RNN的4倍,而是3倍,也就是GRU的参数要比LSTM的参数量要少,但是性能差不多。
Pytorch
在Pytorch中使用nn.LSTM()可调用,参数和RNN的参数相同。具体介绍LSTM的输入和输出:
输入: input, (h_0, c_0)
input:输入数据with维度(seq_len,batch,input_size)
h_0:维度为(num_layers*num_directions,batch,hidden_size),在batch中的
初始的隐藏状态.
c_0:初始的单元状态,维度与h_0相同
输出:output, (h_n, c_n)
output:维度为(seq_len, batch, num_directions * hidden_size)。
h_n:最后时刻的输出隐藏状态,维度为 (num_layers * num_directions, batch, hidden_size)
c_n:最后时刻的输出单元状态,维度与h_n相同。
LSTM的变量:
以MNIST分类为例实现LSTM分类
MNIST图片大小为28×28,可以将每张图片看做是长为28的序列,序列中每个元素的特征维度为28。将最后输出的隐藏状态 作为抽象的隐藏特征输入到全连接层进行分类。最后输出的
导入头文件:
1
2
3
4
5
|
import torch import torch.nn as nn import torch.optim as optim import torchvision from torchvision import transforms |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
class Rnn(nn.Module): def __init__( self , in_dim, hidden_dim, n_layer, n_classes): super (Rnn, self ).__init__() self .n_layer = n_layer self .hidden_dim = hidden_dim self .lstm = nn.LSTM(in_dim, hidden_dim, n_layer, batch_first = True ) self .classifier = nn.Linear(hidden_dim, n_classes) def forward( self , x): out, (h_n, c_n) = self .lstm(x) # 此时可以从out中获得最终输出的状态h # x = out[:, -1, :] x = h_n[ - 1 , :, :] x = self .classifier(x) return x |
训练和测试代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([ 0.5 ], [ 0.5 ]), ]) trainset = torchvision.datasets.MNIST(root = './data' , train = True , download = True , transform = transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size = 128 , shuffle = True ) testset = torchvision.datasets.MNIST(root = './data' , train = False , download = True , transform = transform) testloader = torch.utils.data.DataLoader(testset, batch_size = 100 , shuffle = False ) net = Rnn( 28 , 10 , 2 , 10 ) net = net.to( 'cpu' ) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr = 0.1 , momentum = 0.9 ) # Training def train(epoch): print ( '\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate (trainloader): inputs, targets = inputs.to( 'cpu' ), targets.to( 'cpu' ) optimizer.zero_grad() outputs = net(torch.squeeze(inputs, 1 )) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss + = loss.item() _, predicted = outputs. max ( 1 ) total + = targets.size( 0 ) correct + = predicted.eq(targets). sum ().item() print (batch_idx, len (trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss / (batch_idx + 1 ), 100. * correct / total, correct, total)) def test(epoch): global best_acc net. eval () test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate (testloader): inputs, targets = inputs.to( 'cpu' ), targets.to( 'cpu' ) outputs = net(torch.squeeze(inputs, 1 )) loss = criterion(outputs, targets) test_loss + = loss.item() _, predicted = outputs. max ( 1 ) total + = targets.size( 0 ) correct + = predicted.eq(targets). sum ().item() print (batch_idx, len (testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss / (batch_idx + 1 ), 100. * correct / total, correct, total)) for epoch in range ( 200 ): train(epoch) test(epoch) |
以上这篇Pytorch实现LSTM和GRU示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/winycg/article/details/88937583