服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - Java教程 - JAVA图搜索算法之DFS-BFS

JAVA图搜索算法之DFS-BFS

2023-10-27 01:23未知服务器之家 Java教程

图算法DFS与BFS BFS和DFS代表对图进行遍历,即搜索的算法,搜索算法中常用的只要有两种算法:深度优先遍历(Depth-First-Search : DFS )和广度优先遍历(Breadth-First-Search : BFS )。一个图结构可以用来表示大量现实生活中的问题,比如,道路网

图算法DFS与BFS

BFS和DFS代表对图进行遍历,即搜索的算法,搜索算法中常用的只要有两种算法:深度优先遍历(Depth-First-Search : DFS)和广度优先遍历(Breadth-First-Search : BFS)。一个图结构可以用来表示大量现实生活中的问题,比如,道路网络,计算机网络,社交网络,用户身份解析图

①DFS

参考:一文秒杀所有岛屿题目 :: labuladong的算法小抄

200. 岛屿数量

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例 1:

输入:grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
输出:1

示例 2:

输入:grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
输出:3

如何在二维矩阵中使用 DFS 搜索呢?

// 二维矩阵遍历框架
void dfs(int[][] grid, int i, int j, boolean[][] visited) {
    int m = grid.length, n = grid[0].length;
     // 超出索引边界
    if (i < 0 || j < 0 || i >= m || j >= n) {
        return;
    }
    // 已遍历过 (i, j)
    if (visited[i][j]) {
        return;
    }
    // 进入节点 (i, j)
    visited[i][j] = true;
    dfs(grid, i - 1, j, visited); // 上
    dfs(grid, i + 1, j, visited); // 下
    dfs(grid, i, j - 1, visited); // 左
    dfs(grid, i, j + 1, visited); // 右
    visited[i][j] = false;
}

因为二维矩阵本质上是一幅「图」,所以遍历的过程中需要一个 visited 布尔数组防止走回头路

  • 目标是找到矩阵中 “岛屿的数量” ,即上下左右相连的 1 都被认为是连续岛屿。

算法步骤:每次遇到陆地计数器加1,并把该陆地和该陆地上下左右的陆地变为海水,遍历完之后计数器就是岛屿数量

JAVA图搜索算法之DFS-BFS

class Solution {
  // 主函数,计算岛屿数量
  int numIslands(char[][] grid) {
      int res = 0;
      int m = grid.length, n = grid[0].length;
      // 遍历 grid
      for (int i = 0; i < m; i++) {
          for (int j = 0; j < n; j++) {
              if (grid[i][j] == '1') {
                  // 每发现一个岛屿,岛屿数量加一
                  res++;
                  // 然后使用 DFS 将岛屿淹了
                  dfs(grid, i, j);
              }
          }
      }
      return res;
  }

  // 从 (i, j) 开始,将与之相邻的陆地都变成海水
  void dfs(char[][] grid, int i, int j) {
      int m = grid.length, n = grid[0].length;
      if (i < 0 || j < 0 || i >= m || j >= n) {
          // 超出索引边界
          return;
      }
      if (grid[i][j] == '0') {
          // 已经是海水了
          return;
      }
      // 将 (i, j) 变成海水
      grid[i][j] = '0';
      // 淹没上下左右的陆地
      dfs(grid, i + 1, j);
      dfs(grid, i, j + 1);
      dfs(grid, i - 1, j);
      dfs(grid, i, j - 1);
  }
}

为什么每次遇到岛屿,都要用 DFS 算法把岛屿「淹了」呢?主要是为了省事,避免维护 visited 数组

因为 dfs 函数遍历到值为 0 的位置会直接返回,所以只要把经过的位置都设置为 0,就可以起到不走回头路的作用。

733. 图像渲染

面试题 08.10. 颜色填充 - 力扣(Leetcode)

有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。

你也被给予三个整数 sr , scnewColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充

为了完成 上色工作 ,从初始像素开始,记录初始坐标的 上下左右四个方向上 像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应 四个方向上 像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为 newColor

最后返回 经过上色渲染后的图像

示例 1:

JAVA图搜索算法之DFS-BFS

输入: image = [[1,1,1],[1,1,0],[1,0,1]],sr = 1, sc = 1, newColor = 2
输出: [[2,2,2],[2,2,0],[2,0,1]]
解析: 在图像的正中间,(坐标(sr,sc)=(1,1)),在路径上所有符合条件的像素点的颜色都被更改成2。
注意,右下角的像素没有更改为2,因为它不是在上下左右四个方向上与初始点相连的像素点。

示例 2:

输入: image = [[0,0,0],[0,0,0]], sr = 0, sc = 0, newColor = 2
输出: [[2,2,2],[2,2,2]]

class Solution {
    public int[][] floodFill(int[][] image, int sr, int sc, int color) {
        dfs(image, sr, sc, color, image[sr][sc]);
        return image;
    }
    public void dfs(int[][] image, int i, int j, int newColor, int oldColor){
        int m = image.length, n = image[0].length;
        // 超出边界
        if(i < 0 || j < 0 || i >= m || j >= n) {
            return;
        }
        // 连续的初始值才染色
        if(image[i][j] != oldColor || newColor == oldColor){
            return;
        }
        // 染色
        image[i][j] = newColor;
        // 遍历
        dfs(image, i - 1, j, newColor, oldColor);
        dfs(image, i + 1, j, newColor, oldColor);
        dfs(image, i, j - 1, newColor, oldColor);
        dfs(image, i, j + 1, newColor, oldColor); 

    }
}

1254. 统计封闭岛屿的数目

二维矩阵 grid0 (土地)和 1 (水)组成。岛是由最大的4个方向连通的 0 组成的群,封闭岛是一个 完全 由1包围(左、上、右、下)的岛。

请返回 封闭岛屿 的数目。

示例 1:

JAVA图搜索算法之DFS-BFS

输入:grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
输出:2
解释:
灰色区域的岛屿是封闭岛屿,因为这座岛屿完全被水域包围(即被 1 区域包围)。

示例 2:

JAVA图搜索算法之DFS-BFS

输入:grid = [[0,0,1,0,0],[0,1,0,1,0],[0,1,1,1,0]]
输出:1

示例 3:

输入:grid = [[1,1,1,1,1,1,1],
           [1,0,0,0,0,0,1],
           [1,0,1,1,1,0,1],
           [1,0,1,0,1,0,1],
           [1,0,1,1,1,0,1],
           [1,0,0,0,0,0,1],
           [1,1,1,1,1,1,1]]
输出:2

力扣第 200 题「 岛屿数量」有两点不同:

1、用 0 表示陆地,用 1 表示海水。

2、让你计算「封闭岛屿」的数目。所谓「封闭岛屿」就是上下左右全部被 1 包围的 0,也就是说靠边的陆地不算作「封闭岛屿」

那么如何判断「封闭岛屿」呢?其实很简单,把第200题中那些靠边的岛屿排除掉,剩下的不就是「封闭岛屿」了吗

class Solution {
    public int closedIsland(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for(int j = 0; j < n; j++){
            dfs(grid, 0, j);  // 把靠上边的岛屿淹掉
            dfs(grid, m - 1, j);  // 把靠下边的岛屿淹掉
        }
        for(int i = 0; i < m; i++){
            dfs(grid, i, 0);  // 把靠上边的岛屿淹掉
            dfs(grid, i, n - 1);  // 把靠下边的岛屿淹掉
        }
        int res = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(grid[i][j] == 0){
                    res++;
                    dfs(grid, i, j);
                }
            }
        }
        return res;
    }

    // 从 (i, j) 开始,将与之相邻的陆地都变成海水
    public void dfs(int[][] grid, int i, int j) {
        int m = grid.length, n = grid[0].length;
        // 超出边界
        if (i < 0 || j < 0 || i >= m || j >= n) {
            return;
        }
        // 已经是海水了
        if (grid[i][j] == 1) {
            return;
        }
        // 将 (i, j) 变成海水
        grid[i][j] = 1;
        // 淹没上下左右的陆地
        dfs(grid, i + 1, j);
        dfs(grid, i, j + 1);
        dfs(grid, i - 1, j);
        dfs(grid, i, j - 1);
    }
}

695. 岛屿的最大面积

剑指 Offer II 105. 岛屿的最大面积 - 力扣(Leetcode)

给你一个大小为 m x n 的二进制矩阵 grid

岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

岛屿的面积是岛上值为 1 的单元格的数目。

计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0

示例 1:

JAVA图搜索算法之DFS-BFS

img

输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出:6
解释:答案不应该是 11 ,因为岛屿只能包含水平或垂直这四个方向上的 1 。

示例 2:

输入:grid = [[0,0,0,0,0,0,0,0]]
输出:0

dfs 函数设置返回值,记录每次淹没的陆地的个数

class Solution {
    public int maxAreaOfIsland(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int max = 0; // 记录岛屿的最大面积
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(grid[i][j] == 1){
                    // 淹没岛屿,并更新最大岛屿面积
                    max = Math.max(max, dfs(grid, i, j));
                }
            }
        }
        return max;
    }
    // 淹没与(i,j) 相邻的陆地,并返回淹没的陆地面积
    public int dfs(int[][] grid, int i, int j){
        int m = grid.length, n = grid[0].length;
        // 超出索引边界
        if(i < 0 || j < 0 || i >= m || j >= n){
            return 0;
        }
        // 已经是海水
        if(grid[i][j] == 0){
            return 0;
        }
        // 将(i,j)变为海水
        grid[i][j] = 0;
        // 淹没上下左右的陆地,并统计淹没陆地数量
        int sum = 1; // 默认sum为1,如果不是岛屿,则直接返回0,就可以避免预防错误的情况。
        sum += dfs(grid, i - 1, j);
        sum += dfs(grid, i + 1, j);
        sum += dfs(grid, i, j - 1);
        sum += dfs(grid, i, j + 1);
        return sum;
    }
}

1020. 飞地的数量

给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。

一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。

返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。

示例 1:

JAVA图搜索算法之DFS-BFS

输入:grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]]
输出:3
解释:有三个 1 被 0 包围。一个 1 没有被包围,因为它在边界上。

示例 2:

JAVA图搜索算法之DFS-BFS

img

输入:grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]]
输出:0
解释:所有 1 都在边界上或可以到达边界。

class Solution {
    public int numEnclaves(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        // 去除上下边界陆地
        for(int j = 0; j < n; j++){
            dfs(grid, 0, j);
            dfs(grid, m - 1, j);
        }
        // 去除左右边界陆地
        for(int i = 0; i < m; i++){
            dfs(grid, i, 0);
            dfs(grid, i, n - 1);
        }
        int res = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(grid[i][j]== 1){
                    res++;
                }
            }
        }
        return res;
        
    }
    // 从 (i, j) 开始,将与之相邻的陆地都变成海水
    public void dfs(int[][] grid, int i, int j) {
        int m = grid.length, n = grid[0].length;
        // 超出边界
        if (i < 0 || j < 0 || i >= m || j >= n) {
            return;
        }
        // 已经是海水了
        if (grid[i][j] == 0) {
            return;
        }
        // 将 (i, j) 变成海水
        grid[i][j] = 0;
        // 淹没上下左右的陆地
        dfs(grid, i + 1, j);
        dfs(grid, i, j + 1);
        dfs(grid, i - 1, j);
        dfs(grid, i, j - 1);
    }
}


class Solution {
    public int numEnclaves(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        // 去除上下边界陆地
        for(int j = 0; j < n; j++){
            dfs(grid, 0, j);
            dfs(grid, m - 1, j);
        }
        // 去除左右边界陆地
        for(int i = 0; i < m; i++){
            dfs(grid, i, 0);
            dfs(grid, i, n - 1);
        }
        int res = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(grid[i][j]== 1){
                    res += dfs(grid, i, j);
                }
            }
        }
        return res;
        
    }

    // 淹没与(i,j) 相邻的陆地,并返回淹没的陆地面积
    public int dfs(int[][] grid, int i, int j){
        int m = grid.length, n = grid[0].length;
        // 超出边界
        if(i < 0 || j < 0 || i >= m || j >= n){
            return 0;
        }
        // 已是海水
        if(grid[i][j] == 0){
            return 0;
        }
        // 将(i,j)变为海水
        grid[i][j] = 0;
        // 淹没上下左右的陆地,并统计淹没陆地数量
        int sum = 1;
        sum += dfs(grid, i + 1, j);
        sum += dfs(grid, i, j + 1);
        sum += dfs(grid, i - 1, j);
        sum += dfs(grid, i, j - 1);
        return sum;
    }
}

噪音传播-华为数存面试

噪音传播-题解

终端产品在进行一项噪音监测实验。若将空实验室平面图视作一个N*M的二维矩阵(左上角为[0,0])。工作人员在实验室内设置了若干噪音源,并以[噪音源所在行,噪音源所在列,噪音值]的形式记录于二维数组noise中。
噪音沿相邻8个方向传播,在传播过程中,噪音值(单位为分贝)逐级递减1分贝,直至分贝削弱至1(即噪音源覆盖区域边缘噪音分贝为1);
若同一格被多个噪音源的噪音覆盖,检测结果不叠加,仅保留较大的噪音值(噪音源所在格也可能被其他噪音源的噪声传播所覆盖)。
在所有噪音源开启且持续传播情况稳定后,请监测每格噪音分贝数并返回他们的总和。

注意:
除噪音源以外的所有格初始值为0分贝;不考虑墙面反射。

示例1:

输入:n=5,m=6,noise=[[3,4,3],[1,1,4]]
输出:63

class Main {
    public static void main(String[] args) {
                int[][] noise = {{3,4,3}, {1,1,4}};
        System.out.println(spreadNoise(5, 6, noise));
    }

    public static int spreadNoise(int n, int m, int[][] noise) {
        int[][] grid = new int[n][m];
        for (int[] num: noise) {
            dfs(grid, num[0], num[1], num[2]);
        }
        // 统计结果
        int sum = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                sum += grid[i][j];
            }
        }
        return sum;
    }

    // 噪声填充
    // 将(i,j)的 8 个方向填充数据
    public static void dfs(int[][] grid, int row, int col, int val){
        int m = grid.length, n = grid[0].length;
        // 超出边界
        if (row < 0 || col < 0 || row >= m || col >= n) {
            return;
        }
        // 循环结束(val为0 或 保留较大的噪音值)
        if (val == 0 || grid[row][col] >= val) {
            return;
        }
        // 记录值
        grid[row][col] = val;
        // 沿8个方向扩散
        dfs(grid, row + 1, col, val - 1);
        dfs(grid, row - 1, col, val - 1);
        dfs(grid, row, col + 1, val - 1);
        dfs(grid, row, col - 1, val - 1);
        dfs(grid, row + 1, col + 1, val - 1);
        dfs(grid, row + 1, col - 1, val - 1);
        dfs(grid, row - 1, col + 1, val - 1);
        dfs(grid, row - 1, col - 1, val - 1);
    }
}

79. 单词搜索

给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

进阶:你可以使用搜索剪枝的技术来优化解决方案,使其在 board 更大的情况下可以更快解决问题?

示例 1:

JAVA图搜索算法之DFS-BFS

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true

示例 2:

JAVA图搜索算法之DFS-BFS

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
输出:true

示例 3:

JAVA图搜索算法之DFS-BFS

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
输出:false

class Solution {
    public boolean exist(char[][] board, String word) {
        int m = board.length, n = board[0].length;
        boolean[][] visited = new boolean[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if(dfs(board, i, j, word, 0, visited)){
                     return true;
                 }
            }
        }
        return false;
    }

    // 从 (i, j) 开始向四周搜索,试图匹配 word[p..]
    boolean dfs(char[][] board, int i, int j, String word, int p, boolean[][] visited) {
        int m = board.length, n = board[0].length;
        if(p == word.length()){
            return true;
        }
        if (i < 0 || j < 0 || i >= m || j >= n) {
            // 超出索引边界
            return false;
        }
        if(board[i][j] != word.charAt(p)){
            return false;
        }
        if (visited[i][j]) {
            // 已遍历过 (i, j)
            return false;
        }
        // 进入节点 (i, j)
        visited[i][j] = true;
        boolean t = dfs(board, i - 1, j, word, p + 1, visited); // 上
        boolean b = dfs(board, i + 1, j, word, p + 1, visited); // 下
        boolean l = dfs(board, i, j - 1, word, p + 1, visited); // 左
        boolean r = dfs(board, i, j + 1, word, p + 1, visited); // 右
        visited[i][j] = false;
        return t || b || l || r;
    }
}

994. 腐烂的橘子

在给定的 m x n 网格 grid 中,每个单元格可以有以下三个值之一:

  • 0 代表空单元格;
  • 1 代表新鲜橘子;
  • 2 代表腐烂的橘子。

每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。

返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1

示例 1:

JAVA图搜索算法之DFS-BFS

输入:grid = [[2,1,1],[1,1,0],[0,1,1]]
输出:4

示例 2:

输入:grid = [[2,1,1],[0,1,1],[1,0,1]]
输出:-1
解释:左下角的橘子(第 2 行, 第 0 列)永远不会腐烂,因为腐烂只会发生在 4 个正向上。

示例 3:

输入:grid = [[0,2]]
输出:0
解释:因为 0 分钟时已经没有新鲜橘子了,所以答案就是 0 。

对于二维网格 grid 来说,当遍历到腐烂的

延伸 · 阅读

精彩推荐