需求
业务需要导出的Excel的数字内容保留两位小数,并且四舍五入
代码实现
百度一圈所抄袭的代码
1
2
|
dfScale2.format( 1 .125D); |
发现问题
导出数据很诡异.不是所有数据都是如所想的四舍五入.
经过排查最终发现是RoundingMode的问题,应该使用HALF_UP,
DecimalFormat 默认使用的是HALF_EVEN
1
2
3
4
5
|
DecimalFormat dfScale2 = new DecimalFormat( "###.##" ); System.out.println( "dfScale2.getRoundingMode()=" + dfScale2.getRoundingMode()); //输出结果 dfScale2.getRoundingMode()=HALF_EVEN // |
RoundingMode.HALF_EVEN
想了解HALF_EVEN,去官网API看了下
HALF_EVEN 被舍位是5(如保留两位小数的2.115),后面还有非0值进1(如保留两位小数的2.11500001 格式化为2.12),5后面没有数字或者都是0时,前面是偶数则舍,是奇数则进1,目标是让被舍前一位变为偶数.
- CEILING 向更大的值靠近
- Rounding mode to round towards positive infinity.
- DOWN向下取整
- Rounding mode to round towards zero.
- FLOOR 向更小的值靠近
- Rounding mode to round towards negative infinity.
- HALF_DOWN 五舍六入
- Rounding mode to round towards “nearest neighbor” unless both neighbors are equidistant, in which case round down.
- HALF_EVEN
- Rounding mode to round towards the “nearest neighbor” unless both neighbors are equidistant, in which case, round towards the even neighbor.
- HALF_UP 四舍五入
- Rounding mode to round towards “nearest neighbor” unless both neighbors are equidistant, in which case round up.
- UNNECESSARY 设置这个模式,对于精确值格式化会抛出异常
- Rounding mode to assert that the requested operation has an exact result, hence no rounding is necessary.
- UP 向远离数字0进行进位.
- Rounding mode to round away from zero.
错误的代码测试RoundingMode.HALF_EVEN
为了更好的理解HALF_EVEN,写了些测试代码但是发现自己更迷惘了…搞不清楚到底HALF_EVEN是什么机制进舍…输出结果的尾数很不规律.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
import java.math.BigDecimal; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; public class LocalTest { //定义一个保留两位小数格式的 DecimalFormat 的变量 dfScale2 @Test public void testDecimalFormat() { DecimalFormat dfScale2 = new DecimalFormat( "###.##" ); System.out.println( "dfScale2.getRoundingMode()=" + dfScale2.getRoundingMode()); System.out.println( "dfScale2.format(1.125D)=" + dfScale2.format( 1 .125D)); System.out.println( "dfScale2.format(1.135D)=" + dfScale2.format( 1 .135D)); System.out.println( "dfScale2.format(1.145D)=" + dfScale2.format( 1 .145D)); System.out.println( "dfScale2.format(1.225D)=" + dfScale2.format( 1 .225D)); System.out.println( "dfScale2.format(1.235D)=" + dfScale2.format( 1 .235D)); System.out.println( "dfScale2.format(1.245D)=" + dfScale2.format( 1 .245D)); System.out.println(); System.out.println( "dfScale2.format(2.125D)=" + dfScale2.format( 2 .125D)); System.out.println( "dfScale2.format(2.135D)=" + dfScale2.format( 2 .135D)); System.out.println( "dfScale2.format(2.145D)=" + dfScale2.format( 2 .145D)); System.out.println( "dfScale2.format(2.225D)=" + dfScale2.format( 2 .225D)); System.out.println( "dfScale2.format(2.235D)=" + dfScale2.format( 2 .235D)); System.out.println( "dfScale2.format(2.245D)=" + dfScale2.format( 2 .245D)); System.out.println(); System.out.println( "dfScale2.format(3.125D)=" + dfScale2.format( 3 .125D)); System.out.println( "dfScale2.format(3.135D)=" + dfScale2.format( 3 .135D)); System.out.println( "dfScale2.format(3.145D)=" + dfScale2.format( 3 .145D)); System.out.println( "dfScale2.format(3.225D)=" + dfScale2.format( 3 .225D)); System.out.println( "dfScale2.format(3.235D)=" + dfScale2.format( 3 .235D)); System.out.println( "dfScale2.format(3.245D)=" + dfScale2.format( 3 .245D)); System.out.println(); System.out.println( "dfScale2.format(4.125D)=" + dfScale2.format( 4 .125D)); System.out.println( "dfScale2.format(4.135D)=" + dfScale2.format( 4 .135D)); System.out.println( "dfScale2.format(4.145D)=" + dfScale2.format( 4 .145D)); System.out.println( "dfScale2.format(4.225D)=" + dfScale2.format( 4 .225D)); System.out.println( "dfScale2.format(4.235D)=" + dfScale2.format( 4 .235D)); System.out.println( "dfScale2.format(4.245D)=" + dfScale2.format( 4 .245D)); } } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
dfScale2.getRoundingMode()=HALF_EVEN dfScale2.format( 1 .125D)= 1.12 dfScale2.format( 1 .135D)= 1.14 dfScale2.format( 1 .145D)= 1.15 dfScale2.format( 1 .225D)= 1.23 dfScale2.format( 1 .235D)= 1.24 dfScale2.format( 1 .245D)= 1.25 dfScale2.format( 2 .125D)= 2.12 dfScale2.format( 2 .135D)= 2.13 dfScale2.format( 2 .145D)= 2.15 dfScale2.format( 2 .225D)= 2.23 dfScale2.format( 2 .235D)= 2.23 dfScale2.format( 2 .245D)= 2.25 dfScale2.format( 3 .125D)= 3.12 dfScale2.format( 3 .135D)= 3.13 dfScale2.format( 3 .145D)= 3.15 dfScale2.format( 3 .225D)= 3.23 dfScale2.format( 3 .235D)= 3.23 dfScale2.format( 3 .245D)= 3.25 dfScale2.format( 4 .125D)= 4.12 dfScale2.format( 4 .135D)= 4.13 dfScale2.format( 4 .145D)= 4.14 dfScale2.format( 4 .225D)= 4.22 dfScale2.format( 4 .235D)= 4.24 dfScale2.format( 4 .245D)= 4.25 |
正确的代码测试RoundingMode.HALF_EVEN
突然发现自己忽略了一个事情,测试的参数都是用的double类型.想起来double类型不精准.但是侥幸心理以及知识不牢靠以为 3位小数应该影响不大吧.改了下代码,把参数改为BigDecimal类型
使用BigDecimal时,参数尽量传入字符串,要比传入double精准.
1
|
new BigDecimal( "1.125" ) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
@Test public void testDecimalFormat() { DecimalFormat dfScale2 = new DecimalFormat( "###.##" ); dfScale2.setRoundingMode(RoundingMode.HALF_EVEN); System.out.println( "dfScale2.getRoundingMode()=" + dfScale2.getRoundingMode()); System.out.println( "dfScale2.format(new BigDecimal(\"1.1251\"))=" + dfScale2.format( new BigDecimal( "1.1251" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.1351\"))=" + dfScale2.format( new BigDecimal( "1.1351" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.1451\"))=" + dfScale2.format( new BigDecimal( "1.1451" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.2250\"))=" + dfScale2.format( new BigDecimal( "1.2250" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.2350\"))=" + dfScale2.format( new BigDecimal( "1.2350" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.2450\"))=" + dfScale2.format( new BigDecimal( "1.2450" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.22501\"))=" + dfScale2.format( new BigDecimal( "1.22501" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.23505\"))=" + dfScale2.format( new BigDecimal( "1.23505" ))); System.out.println( "dfScale2.format(new BigDecimal(\"1.24508\"))=" + dfScale2.format( new BigDecimal( "1.24508" ))); |
1
2
3
4
5
6
7
8
9
10
|
dfScale2.getRoundingMode()=HALF_EVEN dfScale2.format( new BigDecimal( "1.1251" ))= 1.13 dfScale2.format( new BigDecimal( "1.1351" ))= 1.14 dfScale2.format( new BigDecimal( "1.1451" ))= 1.15 dfScale2.format( new BigDecimal( "1.2250" ))= 1.22 dfScale2.format( new BigDecimal( "1.2350" ))= 1.24 dfScale2.format( new BigDecimal( "1.2450" ))= 1.24 dfScale2.format( new BigDecimal( "1.22501" ))= 1.23 dfScale2.format( new BigDecimal( "1.23505" ))= 1.24 dfScale2.format( new BigDecimal( "1.24508" ))= 1.25 |
结论
1、警觉doulbe的不精确所引起RoundingMode结果不稳定的问题,即使是四舍五入的模式,对double类型参数使用也会有不满足预期的情况.
2、使用数字格式化时,要注意默认RoundingMode模式是否是自己需要的.如果不是记得手动设置下.
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/baixf/article/details/88792219