服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - R语言 - R语言中逻辑回归知识点总结

R语言中逻辑回归知识点总结

2022-01-17 15:34w3cschool R语言

在本篇文章里小编给大家总结了关于R语言中逻辑回归知识点相关内容,有需要的朋友们跟着学习下。

逻辑回归是回归模型,其中响应变量(因变量)具有诸如True / False或0/1的分类值。 它实际上基于将其与预测变量相关的数学方程测量二元响应的概率作为响应变量的值。

逻辑回归的一般数学方程为

?
1
y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

以下是所使用的参数的描述 

  • y是响应变量。
  • x是预测变量。
  • a和b是作为数字常数的系数。

用于创建回归模型的函数是glm()函数。

语法

逻辑回归中glm()函数的基本语法是

?
1
glm(formula,data,family)

以下是所使用的参数的描述 

  • formula是表示变量之间的关系的符号。
  • data是给出这些变量的值的数据集。
  • family是R语言对象来指定模型的细节。 它的值是二项逻辑回归。

内置数据集“mtcars”描述具有各种发动机规格的汽车的不同型号。 在“mtcars”数据集中,传输模式(自动或手动)由am列描述,它是一个二进制值(0或1)。 我们可以在列“am”和其他3列(hp,wt和cyl)之间创建逻辑回归模型。

?
1
2
3
4
# Select some columns form mtcars.
input <- mtcars[,c("am","cyl","hp","wt")]
 
print(head(input))

当我们执行上面的代码,它产生以下结果

?
1
2
3
4
5
6
7
                  am   cyl  hp    wt
Mazda RX4          1   6    110   2.620
Mazda RX4 Wag      1   6    110   2.875
Datsun 710         1   4     93   2.320
Hornet 4 Drive     0   6    110   3.215
Hornet Sportabout  0   8    175   3.440
Valiant            0   6    105   3.460

创建回归模型

我们使用glm()函数创建回归模型,并得到其摘要进行分析。

?
1
2
3
4
5
input <- mtcars[,c("am","cyl","hp","wt")]
 
am.data = glm(formula = am ~ cyl + hp + wt, data = input, family = binomial)
 
print(summary(am.data))

当我们执行上面的代码,它产生以下结果

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Call:
glm(formula = am ~ cyl + hp + wt, family = binomial, data = input)
 
Deviance Residuals:
     Min        1Q      Median        3Q       Max 
-2.17272    0.14907 0.01464     0.14116   1.27641 
 
Coefficients:
            Estimate Std. Error z value Pr(>|z|) 
(Intercept) 19.70288    8.11637   2.428   0.0152 *
cyl          0.48760    1.07162   0.455   0.6491 
hp           0.03259    0.01886   1.728   0.0840 .
wt         9.14947    4.15332 2.203   0.0276 *
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 43.2297  on 31  degrees of freedom
Residual deviance:  9.8415  on 28  degrees of freedom
AIC: 17.841
 
Number of Fisher Scoring iterations: 8

结论

在总结中,对于变量“cyl”和“hp”,最后一列中的p值大于0.05,我们认为它们对变量“am”的值有贡献是无关紧要的。 只有重量(wt)影响该回归模型中的“am”值。

到此这篇关于R语言中逻辑回归知识点总结的文章就介绍到这了,更多相关R语言逻辑回归内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://www.w3cschool.cn/r/r_logistic_regression.html

延伸 · 阅读

精彩推荐
  • R语言R语言实现支持向量机SVM应用案例

    R语言实现支持向量机SVM应用案例

    本文主要介绍了R语言实现支持向量机SVM应用案例,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    一天_pika5222022-01-18
  • R语言R语言中的vector(向量),array(数组)使用总结

    R语言中的vector(向量),array(数组)使用总结

    这篇文章主要介绍了R语言中的vector(向量),array(数组)使用总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要...

    A叶子叶来5772021-11-14
  • R语言R语言读取xls与xlsx格式文件过程

    R语言读取xls与xlsx格式文件过程

    这篇文章主要为大家介绍了使用R语言读取xls与xlsx格式文件的过程步骤,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪...

    Kanny广小隶11982022-01-20
  • R语言如何用R语言绘制散点图

    如何用R语言绘制散点图

    这篇文章主要介绍了如何用R语言绘制散点图,帮助大家更好的理解和学习使用R语言,感兴趣的朋友可以了解下...

    菜鸟教程13002021-12-23
  • R语言R语言常量知识点总结

    R语言常量知识点总结

    在本篇文章里小编给大家整理了一篇关于R语言常量知识点总结内容,有兴趣的朋友们可以学习分享下。...

    R语言教程网12102021-12-29
  • R语言基于R/RStudio中安装包“无法与服务器建立连接”的解决方案

    基于R/RStudio中安装包“无法与服务器建立连接”的解决方案

    这篇文章主要介绍了基于R/RStudio中安装包“无法与服务器建立连接”的解决方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    truffle52815052022-01-05
  • R语言R语言中qplot()函数的用法说明

    R语言中qplot()函数的用法说明

    这篇文章主要介绍了R语言中qplot()函数的用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    Jack_丁明12752022-01-05
  • R语言R语言gsub替换字符工具的具体使用

    R语言gsub替换字符工具的具体使用

    这篇文章主要介绍了R语言gsub替换字符工具的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友...

    lztttao10372021-12-24