一、引言
最近一周,被借调到其他部门,赶一个紧急需求,需求内容如下:
PC网页触发一条设备升级记录(下图),后台要定时批量设备更新。这里定时要用到Quartz,批量数据处理要用到SpringBatch,二者结合,可以完成该需求。
由于之前,没有用过SpringBatch,于是上网查了下资料,发现可参考的不是很多,于是只能去慢慢的翻看官方文档。
遇到不少问题,就记录一下吧。
二、代码具体实现
1、pom文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
< dependencies > < dependency > < groupId >org.springframework.boot</ groupId > < artifactId >spring-boot-starter-web</ artifactId > </ dependency > < dependency > < groupId >org.postgresql</ groupId > < artifactId >postgresql</ artifactId > </ dependency > < dependency > < groupId >org.springframework.boot</ groupId > < artifactId >spring-boot-starter-jdbc</ artifactId > </ dependency > < dependency > < groupId >org.springframework.boot</ groupId > < artifactId >spring-boot-starter-batch</ artifactId > </ dependency > < dependency > < groupId >org.projectlombok</ groupId > < artifactId >lombok</ artifactId > </ dependency > < dependency > < groupId >org.springframework.boot</ groupId > < artifactId >spring-boot-starter-batch</ artifactId > </ dependency > </ dependencies > |
2、application.yaml文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
spring: datasource: username: thinklink password: thinklink url: jdbc:postgresql: //172.16.205.54:5432/thinklink driver- class -name: org.postgresql.Driver batch: job: enabled: false server: port: 8073 #upgrade-dispatch-base-url: http: //172.16.205.125:8080/api/rpc/dispatch/command/ upgrade-dispatch-base-url: http: //172.16.205.211:8080/api/noauth/rpc/dispatch/command/ # 每次批量处理的数据量,默认为 5000 batch-size: 5000 |
3、Service实现类
触发批处理任务的入口,执行一个job
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
@Service ( "batchService" ) public class BatchServiceImpl implements BatchService { // 框架自动注入 @Autowired private JobLauncher jobLauncher; @Autowired private Job updateDeviceJob; /** * 根据 taskId 创建一个Job * @param taskId * @throws Exception */ @Override public void createBatchJob(String taskId) throws Exception { JobParameters jobParameters = new JobParametersBuilder() .addString( "taskId" , taskId) .addString( "uuid" , UUID.randomUUID().toString().replace( "-" , "" )) .toJobParameters(); // 传入一个Job任务和任务需要的参数 jobLauncher.run(updateDeviceJob, jobParameters); } } |
4、SpringBatch配置类
此部分最重要(☆☆☆☆☆)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
@Configuration public class BatchConfiguration { private static final Logger log = LoggerFactory.getLogger(BatchConfiguration. class ); @Value ( "${batch-size:5000}" ) private int batchSize; // 框架自动注入 @Autowired public JobBuilderFactory jobBuilderFactory; // 框架自动注入 @Autowired public StepBuilderFactory stepBuilderFactory; // 数据过滤器,对从数据库读出来的数据,注意进行操作 @Autowired public TaskItemProcessor taskItemProcessor; // 接收job参数 public Map<String, JobParameter> parameters; public Object taskId; @Autowired private JdbcTemplate jdbcTemplate; // 读取数据库操作 @Bean @StepScope public JdbcCursorItemReader<DispatchRequest> itemReader(DataSource dataSource) { String querySql = " SELECT " + " e. ID AS taskId, " + " e.user_id AS userId, " + " e.timing_startup AS startTime, " + " u.device_id AS deviceId, " + " d.app_name AS appName, " + " d.compose_file AS composeFile, " + " e.failure_retry AS failureRetry, " + " e.tetry_times AS retryTimes, " + " e.device_managered AS deviceManagered " + " FROM " + " eiot_upgrade_task e " + " LEFT JOIN eiot_upgrade_device u ON e. ID = u.upgrade_task_id " + " LEFT JOIN eiot_app_detail d ON e.app_id = d. ID " + " WHERE " + " ( " + " u.device_upgrade_status = 0 " + " OR u.device_upgrade_status = 2" + " )" + " AND e.tetry_times > u.retry_times " + " AND e. ID = ?" ; return new JdbcCursorItemReaderBuilder<DispatchRequest>() .name( "itemReader" ) .sql(querySql) .dataSource(dataSource) .queryArguments( new Object[]{parameters.get( "taskId" ).getValue()}) .rowMapper( new DispatchRequest.DispatchRequestRowMapper()) .build(); } // 将结果写回数据库 @Bean @StepScope public ItemWriter<ProcessResult> itemWriter() { return new ItemWriter<ProcessResult>() { private int updateTaskStatus(DispatchRequest dispatchRequest, int status) { log.info( "update taskId: {}, deviceId: {} to status {}" , dispatchRequest.getTaskId(), dispatchRequest.getDeviceId(), status); Integer retryTimes = jdbcTemplate.queryForObject( "select retry_times from eiot_upgrade_device where device_id = ? and upgrade_task_id = ?" , new Object[]{ dispatchRequest.getDeviceId(), dispatchRequest.getTaskId()}, Integer. class ); retryTimes += 1 ; int updateCount = jdbcTemplate.update( "update eiot_upgrade_device set device_upgrade_status = ?, retry_times = ? " + "where device_id = ? and upgrade_task_id = ?" , status, retryTimes, dispatchRequest.getDeviceId(), dispatchRequest.getTaskId()); if (updateCount <= 0 ) { log.warn( "no task updated" ); } else { log.info( "count of {} task updated" , updateCount); } // 最后一次重试 if (status == STATUS_DISPATCH_FAILED && retryTimes == dispatchRequest.getRetryTimes()) { log.info( "the last retry of {} failed, inc deviceManagered" , dispatchRequest.getTaskId()); return 1 ; } else { return 0 ; } } @Override @Transactional public void write(List<? extends ProcessResult> list) throws Exception { Map taskMap = jdbcTemplate.queryForMap( "select device_managered, device_count, task_status from eiot_upgrade_task where id = ?" , list.get( 0 ).getDispatchRequest().getTaskId() // 我们认定一个批量里面,taskId都是一样的 ); int deviceManagered = ( int )taskMap.get( "device_managered" ); Integer deviceCount = (Integer) taskMap.get( "device_count" ); if (deviceCount == null ) { log.warn( "deviceCount of task {} is null" , list.get( 0 ).getDispatchRequest().getTaskId()); } int taskStatus = ( int )taskMap.get( "task_status" ); for (ProcessResult result: list) { deviceManagered += updateTaskStatus(result.getDispatchRequest(), result.getStatus()); } if (deviceCount != null && deviceManagered == deviceCount) { taskStatus = 2 ; //任务状态 0:待升级,1:升级中,2:已完成 } jdbcTemplate.update( "update eiot_upgrade_task set device_managered = ?, task_status = ? " + "where id = ?" , deviceManagered, taskStatus, list.get( 0 ).getDispatchRequest().getTaskId()); } }; } /** * 定义一个下发更新的 job * @return */ @Bean public Job updateDeviceJob(Step updateDeviceStep) { return jobBuilderFactory.get(UUID.randomUUID().toString().replace( "-" , "" )) .listener( new JobListener()) // 设置Job的监听器 .flow(updateDeviceStep) // 执行下发更新的Step .end() .build(); } /** * 定义一个下发更新的 step * @return */ @Bean public Step updateDeviceStep(JdbcCursorItemReader<DispatchRequest> itemReader,ItemWriter<ProcessResult> itemWriter) { return stepBuilderFactory.get(UUID.randomUUID().toString().replace( "-" , "" )) .<DispatchRequest, ProcessResult> chunk(batchSize) .reader(itemReader) //根据taskId从数据库读取更新设备信息 .processor(taskItemProcessor) // 每条更新信息,执行下发更新接口 .writer(itemWriter) .build(); } // job 监听器 public class JobListener implements JobExecutionListener { @Override public void beforeJob(JobExecution jobExecution) { log.info(jobExecution.getJobInstance().getJobName() + " before... " ); parameters = jobExecution.getJobParameters().getParameters(); taskId = parameters.get( "taskId" ).getValue(); log.info( "job param taskId : " + parameters.get( "taskId" )); } @Override public void afterJob(JobExecution jobExecution) { log.info(jobExecution.getJobInstance().getJobName() + " after... " ); // 当所有job执行完之后,查询设备更新状态,如果有失败,则要定时重新执行job String sql = " SELECT " + " count(*) " + " FROM " + " eiot_upgrade_device d " + " LEFT JOIN eiot_upgrade_task u ON d.upgrade_task_id = u. ID " + " WHERE " + " u. ID = ? " + " AND d.retry_times < u.tetry_times " + " AND ( " + " d.device_upgrade_status = 0 " + " OR d.device_upgrade_status = 2 " + " ) " ; // 获取更新失败的设备个数 Integer count = jdbcTemplate.queryForObject(sql, new Object[]{taskId}, Integer. class ); log.info( "update device failure count : " + count); // 下面是使用Quartz触发定时任务 // 获取任务时间,单位秒 // String time = jdbcTemplate.queryForObject(sql, new Object[]{taskId}, Integer.class); // 此处方便测试,应该从数据库中取taskId对应的重试间隔,单位秒 Integer millSecond = 10 ; if (count != null && count > 0 ){ String jobName = "UpgradeTask_" + taskId; String reTaskId = taskId.toString(); Map<String,Object> params = new HashMap<>(); params.put( "jobName" ,jobName); params.put( "taskId" ,reTaskId); if (QuartzManager.checkNameNotExist(jobName)) { QuartzManager.scheduleRunOnceJob(jobName, RunOnceJobLogic. class ,params,millSecond); } } } } } |
5、Processor,处理每条数据
可以在此对数据进行过滤操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
@Component ( "taskItemProcessor" ) public class TaskItemProcessor implements ItemProcessor<DispatchRequest, ProcessResult> { public static final int STATUS_DISPATCH_FAILED = 2 ; public static final int STATUS_DISPATCH_SUCC = 1 ; private static final Logger log = LoggerFactory.getLogger(TaskItemProcessor. class ); @Value ( "${upgrade-dispatch-base-url:http://localhost/api/v2/rpc/dispatch/command/}" ) private String dispatchUrl; @Autowired JdbcTemplate jdbcTemplate; /** * 在这里,执行 下发更新指令 的操作 * @param dispatchRequest * @return * @throws Exception */ @Override public ProcessResult process( final DispatchRequest dispatchRequest) { // 调用接口,下发指令 String url = dispatchUrl + dispatchRequest.getDeviceId()+ "/" +dispatchRequest.getUserId(); log.info( "request url:" + url); RestTemplate restTemplate = new RestTemplate(); HttpHeaders headers = new HttpHeaders(); headers.setContentType(MediaType.APPLICATION_JSON_UTF8); MultiValueMap<String, String> params = new LinkedMultiValueMap<String, String>(); JSONObject jsonOuter = new JSONObject(); JSONObject jsonInner = new JSONObject(); try { jsonInner.put( "jobId" ,dispatchRequest.getTaskId()); jsonInner.put( "name" ,dispatchRequest.getName()); jsonInner.put( "composeFile" , Base64Util.bytesToBase64Str(dispatchRequest.getComposeFile())); jsonInner.put( "policy" , new JSONObject().put( "startTime" ,dispatchRequest.getPolicy())); jsonInner.put( "timestamp" ,dispatchRequest.getTimestamp()); jsonOuter.put( "method" , "updateApp" ); jsonOuter.put( "params" ,jsonInner); } catch (JSONException e) { log.info( "JSON convert Exception :" + e); } catch (IOException e) { log.info( "Base64Util bytesToBase64Str :" + e); } log.info( "request body json :" + jsonOuter); HttpEntity<String> requestEntity = new HttpEntity<String>(jsonOuter.toString(),headers); int status; try { ResponseEntity<String> response = restTemplate.postForEntity(url,requestEntity,String. class ); log.info( "response :" + response); if (response.getStatusCode() == HttpStatus.OK) { status = STATUS_DISPATCH_SUCC; } else { status = STATUS_DISPATCH_FAILED; } } catch (Exception e){ status = STATUS_DISPATCH_FAILED; } return new ProcessResult(dispatchRequest, status); } } |
6、封装数据库返回数据的实体Bean
注意静态内部类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
public class DispatchRequest { private String taskId; private String deviceId; private String userId; private String name; private byte [] composeFile; private String policy; private String timestamp; private String md5; private int failureRetry; private int retryTimes; private int deviceManagered; // 省略构造函数,setter/getter/tostring方法 //...... public static class DispatchRequestRowMapper implements RowMapper<DispatchRequest> { @Override public DispatchRequest mapRow(ResultSet resultSet, int i) throws SQLException { DispatchRequest dispatchRequest = new DispatchRequest(); dispatchRequest.setTaskId(resultSet.getString( "taskId" )); dispatchRequest.setUserId(resultSet.getString( "userId" )); dispatchRequest.setPolicy(resultSet.getString( "startTime" )); dispatchRequest.setDeviceId(resultSet.getString( "deviceId" )); dispatchRequest.setName(resultSet.getString( "appName" )); dispatchRequest.setComposeFile(resultSet.getBytes( "composeFile" )); dispatchRequest.setTimestamp(DateUtil.DateToString( new Date())); dispatchRequest.setRetryTimes(resultSet.getInt( "retryTimes" )); dispatchRequest.setFailureRetry(resultSet.getInt( "failureRetry" )); dispatchRequest.setDeviceManagered(resultSet.getInt( "deviceManagered" )); return dispatchRequest; } } } |
7、启动类上要加上注解
1
2
3
4
5
6
7
|
@SpringBootApplication @EnableBatchProcessing public class Application { public static void main(String[] args) { SpringApplication.run(Application. class , args); } } |
三、小结一下
其实SpringBatch并没有想象中那么好用,当从数据库中每次取5000条数据后,进入processor中是逐条处理的,这个时候不能不行操作,等5000条数据处理完之后,再一次性执行ItemWriter方法。
在使用的过程中,最坑的地方是ItemReader和ItemWriter这两个地方,如何执行自定义的Sql,参考文中代码就行。至于Quartz定时功能,很简单,只要定时创建SpringBatch里面的Job,让这个job启动就好了,此处就不在给出了,贴的代码太多了。由于公司一些原因,代码不能放到GitHub上。
spring-batch与quartz集成过程中遇到的问题
问题
启动时报Exception
Driver's Blob representation is of an unsupported type: weblogic.jdbc.wrapper.Blob_oracle_sql_BLOB
原因
quartz的driverDelegateClass配置的是OracleDelegate,应用运行在weblogic上
解决
driverDelegateClass对应配置改为
1
|
org.quartz.impl.jdbcjobstore.oracle.weblogic.WebLogicOracleDelegate |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/zxd1435513775/article/details/99677223