服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++实现LeetCode(115.不同的子序列)

C++实现LeetCode(115.不同的子序列)

2021-12-02 15:02Grandyang C/C++

这篇文章主要介绍了C++实现LeetCode(115.不同的子序列),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 115. Distinct Subsequences 不同的子序列

Given a string S and a string T, count the number of distinct subsequences of S which equals T.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Example 1:

Input: S =

"rabbbit"

, T =

"rabbit"
Output: 3

Explanation:

As shown below, there are 3 ways you can generate "rabbit" from S.
(The caret symbol ^ means the chosen letters)

rabbbit

^^^^ ^^

rabbbit

^^ ^^^^

rabbbit

^^^ ^^^

Example 2:

Input: S =

"babgbag"

, T =

"bag"
Output: 5

Explanation:

As shown below, there are 5 ways you can generate "bag" from S.
(The caret symbol ^ means the chosen letters)

babgbag

^^ ^

babgbag

^^    ^

babgbag

^    ^^

babgbag

  ^  ^^

babgbag

    ^^^

看到有关字符串的子序列或者配准类的问题,首先应该考虑的就是用动态规划 Dynamic Programming 来求解,这个应成为条件反射。而所有 DP 问题的核心就是找出状态转移方程,想这道题就是递推一个二维的 dp 数组,其中 dp[i][j] 表示s中范围是 [0, i] 的子串中能组成t中范围是 [0, j] 的子串的子序列的个数。下面我们从题目中给的例子来分析,这个二维 dp 数组应为:

  Ø r a b b b i t
Ø
1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3

首先,若原字符串和子序列都为空时,返回1,因为空串也是空串的一个子序列。若原字符串不为空,而子序列为空,也返回1,因为空串也是任意字符串的一个子序列。而当原字符串为空,子序列不为空时,返回0,因为非空字符串不能当空字符串的子序列。理清这些,二维数组 dp 的边缘便可以初始化了,下面只要找出状态转移方程,就可以更新整个 dp 数组了。我们通过观察上面的二维数组可以发现,当更新到 dp[i][j] 时,dp[i][j] >= dp[i][j - 1] 总是成立,再进一步观察发现,当 T[i - 1] == S[j - 1] 时,dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1],若不等, dp[i][j] = dp[i][j - 1],所以,综合以上,递推式为:

dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)

根据以上分析,可以写出代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
    int numDistinct(string s, string t) {
        int m = s.size(), n = t.size();
        vector<vector<long>> dp(n + 1, vector<long>(m + 1));
        for (int j = 0; j <= m; ++j) dp[0][j] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                dp[i][j] = dp[i][j - 1] + (t[i - 1] == s[j - 1] ? dp[i - 1][j - 1] : 0);
            }
        }
        return dp[n][m];
    }
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/115

参考资料:

https://leetcode.com/problems/distinct-subsequences/

https://leetcode.com/problems/distinct-subsequences/discuss/37327/Easy-to-understand-DP-in-Java

https://leetcode.com/problems/distinct-subsequences/discuss/37412/Any-better-solution-that-takes-less-than-O(n2)-space-while-in-O(n2)-time

到此这篇关于C++实现LeetCode(115.不同的子序列)的文章就介绍到这了,更多相关C++实现不同的子序列内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://www.cnblogs.com/grandyang/p/4294105.html

延伸 · 阅读

精彩推荐