看了上面的算法,相信大家基本可以猜到,相对于比特币的限量的性质,对于本算法来说,难解程度的根本原因即为向量环路的迭代次数。迭代次数越多,则算法越难解,从而导致解题需要花费更多的时候,再基于这点,在数学上,当解题次数足够大时,效率会无限小,从而导致了解题时间无限长最后导致加密货币的发放无限小。
创世区块创建(部分大妈在前面有实现,而区块这一部分将会详细解答)
1
2
3
4
5
6
7
8
|
void Make_First_Block() { Getpublickey(); blo.data = circle; blo.pre_hash = 0; blo.this_hash = (blo.pre_hash+public_Key) * (a+b); Block.push_back(blo); } |
由于在区块链中,本区快的数字签名是基于上一区块的数字签名和区块本身的DATA决定, 所以,在这里我们采用了上一区块的数字签名加上难解的PublicKey乘上长轴和短轴的和实现本区块的数字签名的算法。
添加区块(当当前区块被算出时,添加新区块,检查签名正确性。)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
void Append_Block() { pre_blo = blo; bool flag = true ; auto temp = public_Key; circle = circle + 1; Getpublickey(); blo.data = circle; blo.pre_hash = blo.this_hash; blo.this_hash = (blo.pre_hash + public_Key) * (a + b); for (list::iterator itor = Block.begin(); itor != Block.end(); itor++) { if ((*itor).this_hash != (*itor).pre_hash + temp * (a + b)) { flag = false ; break ; } } if (flag) { Block.push_back(blo); }; } |
这个迭代其实可以不用的,因为我在外部还定义了一个block类型的全局变量Pre_block和blo。Pre_block存储了上一个区块的信息。而本区块的信息则存储在Blo中。只有当用户解出当前区块后,才可以得到新区块。而data参数,为了方便仅存储了当前区块所在的位置。
区块的计算(用类实现)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
class Get_Block :Create_Block { public : int diffcult; int number = 1; Get_Block():Create_Block(“OK”){ } void calc() { double start = clock (); while ( true ){ for (unsigned long long z = 1; z < ULLONG_MAX; z++){ for (unsigned long long j = 1; j < 65535; j = j + 1) { for (unsigned long long i = 1; i < 65535; i = i + 1) { Cryptography *person = new Cryptography(i,j,z); person->Getpublickey(); block bloc; bloc.data = circle; bloc.pre_hash = pre_blo.this_hash; bloc.this_hash = (blo.pre_hash + person->public_Key) * (i + j); if (blo.data == bloc.data &&blo.pre_hash== bloc.pre_hash && blo.this_hash == bloc.this_hash) { double end = clock (); cout << “历时”<<end-start<<“毫秒获得的第” << number++ <<“个区块信息为:” << endl; cout << “data:” << bloc.data << endl; cout << “this_hash:” << bloc.this_hash << endl; cout << “pre_hash:” << bloc.pre_hash << endl << “=======================” << endl << endl; this ->Append_Block(); start = clock (); } delete []person; } } } } } }; |
完整代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
#include #include <stdio.h> #include <windows.h> #include #include #include #include #include <time.h> using namespace std; struct Moving_Point { unsigned long long x; unsigned long long y; }; int circle = 1; class Martix { public : static const int circle_s = 1; //假定向量环路为1; static const int KEY =Martix::circle_s * 8; private : unsigned long long martix_4_2[Martix::KEY / 2][2]; //存储向量矩阵 unsigned long long martix_8_8[Martix::KEY][Martix::KEY]; //存储由向量矩阵得到的转置矩阵 unsigned long long martix_complete[KEY * 2]; //存储操作完成后的矩阵(一维) public : Martix(string a) {}; Martix( int a, int b, int circle) { int key = 8; int cir = circle; while (cir–) { martix_4_2[key / 2 - 4][0] = (-1)*b; martix_4_2[key / 2 - 4][1] = (-1)*a; martix_4_2[key / 2 - 3][0] = b; martix_4_2[key / 2 - 3][1] = (-1)*a; martix_4_2[key / 2 - 2][0] = b; martix_4_2[key / 2 - 2][1] = a; martix_4_2[key / 2 - 1][0] = (-1)*b; martix_4_2[key / 2 - 1][1] = a; key += 8; } } void Change_New_Martix() { for ( int i = 0; i < 2; i++) { for ( int j = 0; j < 2; j++) { martix_8_8[i][j] = 0; } } for ( int j = 2; j < KEY / 2 + 2; j++) { martix_8_8[0][j] = martix_4_2[j - 2][0] * (-1); martix_8_8[1][j] = martix_4_2[j - 2][1] * (-1); } for ( int i = 2; i < KEY / 2 + 2; i++) { martix_8_8[i][0] = martix_4_2[i - 2][0] * (-1); martix_8_8[i][1] = martix_4_2[i - 2][1] * (-1); } for ( int i = 2; i < KEY / 2 + 2; i++) { for ( int j = 2; j < KEY / 2 + 2; j++) { martix_8_8[i][j] = 0; } } } public : void Save_Martix() { int key = 0; for ( int i = 0; i < KEY / 2 + 2; i++) { for ( int j = 0; j < KEY / 2 + 2; j++) { if (martix_8_8[i][j] != 0) { martix_complete[key++] = martix_8_8[i][j]; } } } } unsigned long long GetPublicKey() { unsigned long long public_key = martix_complete[0]; for ( int i = 1; i < KEY * 2; i++) { if (i % 2 == 0) { public_key = public_key + martix_complete[i]; } else { public_key = public_key * martix_complete[i]; } } return public_key; } }; class Cryptography :Martix { public : /作为私钥,发送方保存内容/ unsigned long long a; //椭圆长轴的半轴长度 unsigned long long b; //椭圆短轴的半轴长度 /作为公钥,接收方接受公钥/ unsigned long long public_Key; //通过椭圆矩阵算法得到的公钥G Moving_Point p; //随机选定的在椭圆上的点 public : Cryptography(string a) :Martix(“OK”) {}; Cryptography(unsigned long long in_a, unsigned long long in_b, int diffcult) :Martix(in_a, in_b,diffcult) { this ->a = in_a; this ->b = in_b; p.x = 0; p.y = 0; public_Key = Getpublickey(); } unsigned long long Getpublickey() { Get_Public_Key(); return public_Key; } Moving_Point GetPoint() { Get_Point(); return p; } public : void PrintPrivateKey() { cout << “#############私钥:#############” << endl; cout << “长轴:” << 2this->a << “\t\t”; cout << “短轴:” << 2this->b << endl; } private : void Get_Point() { if (p.x == 0 && p.y == 0) { while (!Is_Moving_Point()) { Get_Moving_Point_P(); } } } void Get_Public_Key() { this ->Change_New_Martix(); this ->Save_Martix(); this ->public_Key = this ->GetPublicKey(); } void Get_Moving_Point_P() //得到一个随机的在椭圆上的点的坐标 { for ( int i = 0; i < this ->a; i++) { for ( int j = 0; j < this ->b; j++) { p.x = i; p.y = j; } } } bool Is_Moving_Point() { if ( pow (b, 2)* pow (p.y, 2) + pow (a, 2)* pow (p.x, 2) == pow (a, 2)* pow (b, 2) && p.y <= a && p.x <= b) return true ; else return false ; } }; struct block { unsigned long long this_hash; unsigned long long pre_hash; unsigned long long data; }; block blo; block pre_blo = {0,0,0}; class Create_Block: public Cryptography { public : list Block; public : Create_Block(string a):Cryptography(“OK”) {}; Create_Block( int x = rand ()*2, int y = rand (), int diffcult = 1):Cryptography(x,y,diffcult){ } void Make_First_Block() { Getpublickey(); blo.data = circle; blo.pre_hash = 0; blo.this_hash = (blo.pre_hash+public_Key) * (a+b); Block.push_back(blo); } void Append_Block() { pre_blo = blo; bool flag = true ; auto temp = public_Key; circle = circle + 1; Getpublickey(); blo.data = circle; blo.pre_hash = blo.this_hash; blo.this_hash = (blo.pre_hash + public_Key) * (a + b); for (list::iterator itor = Block.begin(); itor != Block.end(); itor++) { if ((*itor).this_hash != (*itor).pre_hash + temp * (a + b)) { flag = false ; break ; } } if (flag) { Block.push_back(blo); }; } }; class Get_Block :Create_Block { public : int diffcult; int number = 1; Get_Block():Create_Block(“OK”){ } void calc() { double start = clock (); while ( true ){ for (unsigned long long z = 1; z < ULLONG_MAX; z++){ for (unsigned long long j = 1; j < 65535; j = j + 1) { for (unsigned long long i = 1; i < 65535; i = i + 1) { Cryptography *person = new Cryptography(i,j,z); person->Getpublickey(); block bloc; bloc.data = circle; bloc.pre_hash = pre_blo.this_hash; bloc.this_hash = (blo.pre_hash + person->public_Key) * (i + j); if (blo.data == bloc.data &&blo.pre_hash== bloc.pre_hash && blo.this_hash == bloc.this_hash) { double end = clock (); cout << “历时”<<end-start<<“毫秒获得的第” << number++ <<“个区块信息为:” << endl; cout << “data:” << bloc.data << endl; cout << “this_hash:” << bloc.this_hash << endl; cout << “pre_hash:” << bloc.pre_hash << endl << “=======================” << endl << endl; this ->Append_Block(); start = clock (); } delete []person; } } } } } }; int main() { Create_Block * one = new Create_Block(); one->Make_First_Block(); Get_Block* two = new Get_Block(); two->calc(); return 0; } |
不得不说第一个区块的挖掘永远是最快的。第二个区块确实要等好久才可以得出。以上即为C/C++实现区块链的全部源码。仅用于学习交流,不得用于商业用途,转载必究。
作者:程序小黑
来源:CSDN
原文:https://blog.csdn.net/qq_27180763/article/details/82588305
版权声明:本文为博主原创文章,转载请附上博文链接!
到此这篇关于C++实现区块链的源码的文章就介绍到这了,更多相关c++区块链内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!