服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++实现并查集

C++实现并查集

2021-09-14 15:04SCS199411 C/C++

这篇文章主要为大家详细介绍了C++实现并查集,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了C++实现并查集的具体代码,供大家参考,具体内容如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <iostream>
#include <vector>
#include <cassert>
 
using namespace std;
 
class UnionFind{
private:
  vector<int> parent;
  int count;
  //优化,记录p和q所在组的深度,在合并时将深度小的结点的根指向深度大的结点的根
  vector<int> rank;
 
public:
  UnionFind(int count){
    parent.resize(count);
    rank.resize(count);
    this->count = count;
    for(int i = 0; i < count; ++i){
      parent[i] = i;
      rank[i] = 1;
    }
  }
  ~UnionFind(){
    parent.clear();
    rank.clear();
  }
  //路径压缩
  int find(int p){
    assert(p >= 0 && p < count);
    if(p != parent[p])
      parent[p] = find(parent[p]);
    return parent[p];
  }
  bool isConnected(int p, int q){
    return find(p) == find(q);
  }
  void unionElement(int p, int q){
    int pRoot = find(p), qRoot = find(q);
    if(pRoot == qRoot)
      return;
    if(rank[pRoot] < rank[qRoot])
      parent[pRoot] = qRoot;
    else if(rank[qRoot] < rank[pRoot])
      parent[qRoot] = pRoot;
    else{
      //两者的rank相等
      parent[pRoot] = qRoot;
      rank[qRoot] += 1;
    }
  }
};

小编再补充一段代码,之前收藏的一段代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <iostream>
 
using namespace std;
class UF  {
 //cnt is the number of disjoint sets.
 //id is an array that records distinct identity of each set,when two sets are merged ,their id will be same.
 //sz is an array that records the child number of each set including the set self.
 int *id, cnt, *sz;
public:
 // Create an empty union find data structure with N isolated sets.
 UF(int N)  {
 cnt = N;
 id = new int[N];
 sz = new int[N];
 for (int i = 0; i<N; i++) {
  id[i] = i;
  sz[i] = 1;
 }
 }
 ~UF() {
 delete[] id;
 delete[] sz;
 }
 // Return the id of component corresponding to object p.
 int find(int p) {
 
 if (p != id[p]){
  id[p] = find(id[p]);
 }
 return id[p];
 }
 // Replace sets containing x and y with their union.
 void merge(int x, int y) {
 int i = find(x);
 int j = find(y);
 if (i == j) return;
 
 // make smaller root point to larger one
 if (sz[i] < sz[j]) {
  id[i] = j;
  sz[j] += sz[i];
 }
 else {
  id[j] = i;
  sz[i] += sz[j];
 }
 cnt--;
 }
 // Are objects x and y in the same set?
 bool connected(int x, int y)  {
 return find(x) == find(y);
 }
 // Return the number of disjoint sets.
 int count() {
 return cnt;
 }
};
 
void main(){
 UF test(5);
 test.merge(2, 3);
 test.merge(3, 4);
 cout << test.find(4);
 cout << test.count();
}

同时谢谢这位作者的分享

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/SCS199411/article/details/99224338

延伸 · 阅读

精彩推荐