一.前言
首先在聊ReentrantLock之前,我们需要知道整个JUC的并发同步的基石,currrent里面所有的共享变量都是由volatile修饰的,我们知道volatile的语义有2大特点,可见性以及防止重排序(内存屏障,volatie写与volatile读)
1、当第二个操作为volatile写操做时,不管第一个操作是什么(普通读写或者volatile读写),都不能进行重排序。这个规则确保volatile写之前的所有操作都不会被重排序到volatile之后;
2、当第一个操作为volatile读操作时,不管第二个操作是什么,都不能进行重排序。这个规则确保volatile读之后的所有操作都不会被重排序到volatile之前;
3、当第一个操作是volatile写操作时,第二个操作是volatile读操作,不能进行重排序。
而cas操作同时包含了volatile写/读语义,这二者的完美结合就组成了current的基石
二.ReentrantLock的基础用法
1.
- public class ReentrantLockText {
- public static void main(String[] args) {
- Lock lock = new ReentrantLock();
- Thread t1 = new Thread(()->{
- try {
- lock.lock();
- System.out.println("t1 start");
- TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
- System.out.println("t1 end");
- } catch (InterruptedException e) {
- System.out.println("interrupted!");
- } finally {
- lock.unlock();
- }
- });
- t1.start();
- Thread t2 = new Thread(()->{
- try {
- //lock.lock();
- lock.lockInterruptibly(); //可以对interrupt()方法做出响应
- System.out.println("t2 start");
- TimeUnit.SECONDS.sleep(5);
- System.out.println("t2 end");
- } catch (InterruptedException e) {
- System.out.println("interrupted!");
- } finally {
- lock.unlock();
- }
- });
- t2.start();
- try {
- TimeUnit.SECONDS.sleep(1);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- t2.interrupt(); //打断线程2的等待
- }
- }
运行结果
reentrantlock用于替代synchronized
- 需要注意的是,必须要必须要必须要手动释放锁(重要的事情说三遍)
- 使用syn锁定的话如果遇到异常,jvm会自动释放锁,但是lock必须手动释放锁,因此经常在finally中进行锁的释放
- 使用reentrantlock可以进行“尝试锁定”tryLock,这样无法锁定,或者在指定时间内无法锁定,线程可以决定是否继续等待
- 使用ReentrantLock还可以调用lockInterruptibly方法,可以对线程interrupt方法做出响应
- 在一个线程等待锁的过程中,可以被打断
2.ReentrantLock还有一个tryLock(time),可以指定时间,如果指定时间内没有获得锁,则放弃,可以通过其返回值来决定是否继续等待
3.还有就是Condition了(我个人觉得这是最灵活的一个地方)
- public class Lock_condition {
- public static void main(String[] args) {
- char[] aI = "1234567".toCharArray();
- char[] aC = "ABCDEFG".toCharArray();
- Lock lock = new ReentrantLock();
- Condition conditionT1 = lock.newCondition();
- Condition conditionT2 = lock.newCondition();
- new Thread(()->{
- try {
- lock.lock();
- for(char c : aI) {
- System.out.print(c);
- conditionT2.signal();
- conditionT1.await();
- }
- conditionT2.signal();
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- lock.unlock();
- }
- }, "t1").start();
- new Thread(()->{
- try {
- lock.lock();
- for(char c : aC) {
- System.out.print(c);
- conditionT1.signal();
- conditionT2.await();
- }
- conditionT1.signal();
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- lock.unlock();
- }
- }, "t2").start();
- }
- }
这是condition结合lock(独占锁)的用法
condition目前只实现了独占锁,关于condition的源码理解,后续也会继续更新,暂时我们只需要知道类似object的wait与notifiy
三.原理+源码
我们现在知道了基本用法,那么我们就可以开始探究源码了
1.AQS
我们知道JUC里面的核心类就是AQS,那么AQS究竟是个啥东西呢?
1)先上内部类NODE源码
- static final class Node {
- static final Node SHARED = new Node();
- static final Node EXCLUSIVE = null;
- static final int CANCELLED = 1;
- static final int SIGNAL = -1;
- static final int PROPAGATE = -3;
- volatile int waitStatus;
- volatile Node next;
- volatile Node prev;
- volatile Thread thread;
- Node nextWaiter;
不知道大家在看到这个 Node next;Node prev;的时候是啥感觉,反正我当时是激动坏了,这不就是一个双向链表嘛,
再看volatile Thread thread;这个属性,这是一个管理线程的双向链表,换句话说就是将线程打包成立节点放入AQS的链表中
基础的结构清楚之后。
SHARED 与EXCLUSIVE 代表是独占节点还是共享节点
2)再上AQS属性源码
- private transient volatile Node head;
- private transient volatile Node tail;
- private volatile int state;
Node0 head与tail不用说,这是来管理节点的,
这里我们要核心介绍一个属性是state,这也是AQS这个类的灵魂,
1.再独占锁中这个state是1或者0,(如果大于1则表示锁重入,这个稍后会有源码分析)
2在共享锁中代表还有多少共享锁资源,
3.在读写锁中,高16位代表写锁是否被占用,低16位代表有多少读锁,
4.在CountDownLatch中,通过构造参数代码门闸剩余个数
5.在Semaphore中,同样通过构造参数代表信号灯个数
2.ReentrantLock获取锁源码(独占锁)
首先公平锁与非公平锁,分别继承与Sync
FairSync NoFairSync ,默认是非公平锁,可以在构造方法上指定
- ReentrantLock lock = new ReentrantLock(true);//ture则是公平锁
公平锁故名思意,在AQS中管理着一个线程队列,如果这时候 有一个线程过来抢这把锁,如果是公平锁,那么会判断队列是不是存在不同与当前线程的等待队列(FIFO),如果存在则去排队,非公平锁则是直接去排队
(2.1.非公平锁获取锁)
- final void lock() {
- if (compareAndSetState(0, 1))//cas原子操作尝试去修改值,如果修改成功说明成功获取到了锁
- setExclusiveOwnerThread(Thread.currentThread());
- else
- acquire(1);
- }
首先cas原子操作尝试去修改值,如果修改成功说明成功获取到了锁,进入setExclusiveOwnerThread()方法
- protected final void setExclusiveOwnerThread(Thread thread) {
- exclusiveOwnerThread = thread;
- }
将当前线程记录,实现偏向锁,一行代码便完美实现了偏向锁!!
如果失败则,调用acquire();这个方法调用的实际上是子类的nonfairTryAcquire方法
- final boolean nonfairTryAcquire(int acquires) {
- final Thread current = Thread.currentThread();
- int c = getState();
- if (c == 0) {
- if (compareAndSetState(0, acquires)) {
- setExclusiveOwnerThread(current);
- return true;
- }
- }
- else if (current == getExclusiveOwnerThread()) {
- int nextc = c + acquires;
- if (nextc < 0) // overflow
- throw new Error("Maximum lock count exceeded");
- setState(nextc);
- return true;
- }
- return false;
- }
首先,获取state的值,判断是否为0,如果为0,则说明锁没有被占有,(可能是刚刚被释放)那么cas操作开始尝试获取锁,
**(注意注意注意)**重要的事情说三遍,这里仅仅尝试获取一次,没有自旋!!这是独占锁与共享锁的区别之一,因为如果state>=0(对于共享锁来说state代表剩余数量),那么共享锁会不断尝试自旋获取锁,之道state<0,因为只要》0那么就可能共享到锁
接下来的else if就是重入锁的操作了,判断当先线程是不是记录的线程,如果是,每次重入state+1,如果不是就返回flase,直接拜拜
(2.2公平锁获取锁)
刚刚介绍了公平锁的意义,所有直接上源码,公平锁比非公平锁多了一个公平判断
- public final boolean hasQueuedPredecessors() {
- // The correctness of this depends on head being initialized
- // before tail and on head.next being accurate if the current
- // thread is first in queue.
- Node t = tail; // Read fields in reverse initialization order
- Node h = head;
- Node s;
- return h != t &&
- ((s = h.next) == null || s.thread != Thread.currentThread());
- }
我们可以看到hasQueuedPredecessors是用来判断队列是否有不同于当前线程的节点等待,这里重点讨论一个情况,
h != t返回true,(s = h.next) == null返回true
首先可以知道队列中有2个节点,但是头节点没有后继结点,在这里列举一种情况,有另一个线程已经执行到初始化队列的操作了,介于compareAndSetHead(new Node())与tail = head之间,也就是之后说的enq自旋方法,请继续往下看
继续如果非公平锁没有获取到锁,那么会调用acquireQueued和addwaiter方法
- public final void acquire(int arg) {
- if (!tryAcquire(arg) &&
- acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
- selfInterrupt();
- }
首先来看addwaiter方法
- private Node addWaiter(Node mode) {
- Node node = new Node(Thread.currentThread(), mode);
- // Try the fast path of enq; backup to full enq on failure
- Node pred = tail;
- if (pred != null) {
- node.prev = pred;
- if (compareAndSetTail(pred, node)) {
- pred.next = node;
- return node;
- }
- }
- enq(node);
- return node;
- }
首先将,当前线程封装成一个,Node,然后通过判断尾结点是不是空的方式,判断队列是不是空的,如果存在尾结点,那么直接进先驱后继的改造,放入双向链表,完成链表结构,那么如果是空的呢?这么调用了一个enq的自旋方法
- private Node enq(final Node node) {
- for (;;) {
- Node t = tail;
- if (t == null) { // Must initialize
- if (compareAndSetHead(new Node()))
- tail = head;
- } else {
- node.prev = t;
- if (compareAndSetTail(t, node)) {
- t.next = node;
- return t;
- }
- }
- }
- }
我们可以看到这个一个自旋方法,第一次循环:t为null,那么cas就new出来一个新结点,头尾都指向这个新结点,
第二次循环,将传进来的这个线程结点的前驱指向刚刚new的这个结点,然后cas操作进行,将这个线程结点替换为尾部结点,然后head后继指向线程结点,返回head
经过二次循环,得到了一个由2个节点组成的队列,head-》node,head是假节点(里面不包括线程为null),node才是真正的线程结点(addwrite封装好的传进来的线程结点)
问题1.为什么一定要用cas操作,因为防止别的线程修改了该队列
好,现在我们继续,看acquireQueued
- final boolean acquireQueued(final Node node, int arg) {
- boolean failed = true;
- try {
- boolean interrupted = false;
- for (;;) {
- final Node p = node.predecessor();
- if (p == head && tryAcquire(arg)) {
- setHead(node);
- p.next = null; // help GC
- failed = false;
- return interrupted;
- }
- if (shouldParkAfterFailedAcquire(p, node) &&
- parkAndCheckInterrupt())
- interrupted = true;
- }
- } finally {
- if (failed)
- cancelAcquire(node);
- }
- }
这是一个最最核心的方法,从队列中取线程
首先这是一个自旋,判断该节点的前驱节点是不是head,因为(FIFO)先进先出队列。
如果不是直接拜拜进入shouldParkAfterFailedAcquire,继续上源码
- private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
- int ws = pred.waitStatus;
- if (ws == Node.SIGNAL)
- /*
- * This node has already set status asking a release
- * to signal it, so it can safely park.
- */
- return true;
- if (ws > 0) {
- /*
- * Predecessor was cancelled. Skip over predecessors and
- * indicate retry.
- */
- do {
- node.prev = pred = pred.prev;
- } while (pred.waitStatus > 0);
- pred.next = node;
- } else {
- /*
- * waitStatus must be 0 or PROPAGATE. Indicate that we
- * need a signal, but don't park yet. Caller will need to
- * retry to make sure it cannot acquire before parking.
- */
- compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
- }
- return false;
- }
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
- CANCELLED:因为超时或者中断,结点会被设置为取消状态,被取消状态的结点不应该去竞争锁,只能保持取消状态不变,不能转换为其他状态。处于这种状态的结点会被踢出队列,被GC回收;
- SIGNAL:表示这个结点的继任结点被阻塞了,到时需要通知它;
- CONDITION:表示这个结点在条件队列中,因为等待某个条件而被阻塞;
- PROPAGATE:使用在共享模式头结点有可能牌处于这种状态,表示锁的下一次获取可以无条件传播;
- 0:None of the above,新结点会处于这种状态。
首先说明一下waitStatus这个属性,为什么之前不提呢,因为之前没有对waitStatus进行操作,我们在new节点与封装结点的时候没有考虑这个属性,所以我们现在当成一个新属性,值为0来看待,
shouldParkAfterFailedAcquire这个代码的逻辑意义是说明呢?
如果是SIGNAL那么,直接ture,
如果大于0,则是CANCELLED,被取消了,直接剔除队列
如果都不是,那么将其前驱结点设为SIGNAL,也就是可以安心睡觉了,定好闹钟了,可以被等着唤醒了,
我们现在很明显是第三种,因为之前啥都没干,就是0,
所以本来状态
进行shouldParkAfterFailedAcquire之后,
那么现在链表中,对线程1的前驱设闹钟,0变成-1
假设这时候又来了个线程2,那么同理,对线程而的先驱设闹钟0变成-1
在调用了shouldParkAfterFailedAcquire()之后,调用parkAndCheckInterrupt方法用于阻塞,
这里提一下,关于parkAndCheckInterrupt,lock里面用于阻塞都是基于lockSupper.park()与lockSupper.unpark()完成了,而lockSupper调用的又是unsafe这个类,我们知道java是基于jvm实现的,并不能和c++一样直接对os进行操作,所以jvm给我们提供了一个梯子,这个梯子就是unsafe这个类,直接将线程的的交个操作系统阻塞
四,释放锁
终于到了释放锁,独占锁的释放锁的逻辑相对与共享锁来说比较简单,后续我也会继续更新共享锁的源码
- public final boolean release(int arg) {
- if (tryRelease(arg)) {
- Node h = head;
- if (h != null && h.waitStatus != 0)
- unparkSuccessor(h);
- return true;
- }
- return false;
- }
首先我们来看tryRelease方法,
- protected final boolean tryRelease(int releases) {
- int c = getState() - releases;
- if (Thread.currentThread() != getExclusiveOwnerThread())
- throw new IllegalMonitorStateException();
- boolean free = false;
- if (c == 0) {
- free = true;
- setExclusiveOwnerThread(null);
- }
- setState(c);
- return free;
- }
首先获取,int c = getState() - releases;这里可能c是>0的,因为独占锁的重入锁(上面以及说明了独占锁的重入的源码操作),所以有可能是需要进行多次解锁的,继续
判断当前线程是不是独占线程,如果不是则报IllegalMonitorStateException异常
一直解锁到c=0的时候,那么线程已经解锁,则设setExclusiveOwnerThread=null
设置当前独占线程为null,然后设置state为0
继续回到release,如果头节点不是null而且h.waitStatus != 0,说明是-1,说明设置闹钟了,需要唤醒aqs队列中的阻塞结点,调用的是unparkSuccessor方法,继续看源码
- private void unparkSuccessor(Node node) {
- /*
- * If status is negative (i.e., possibly needing signal) try
- * to clear in anticipation of signalling. It is OK if this
- * fails or if status is changed by waiting thread.
- */
- int ws = node.waitStatus;
- if (ws < 0)
- compareAndSetWaitStatus(node, ws, 0);
- /*
- * Thread to unpark is held in successor, which is normally
- * just the next node. But if cancelled or apparently null,
- * traverse backwards from tail to find the actual
- * non-cancelled successor.
- */
- Node s = node.next;
- if (s == null || s.waitStatus > 0) {
- s = null;
- for (Node t = tail; t != null && t != node; t = t.prev)
- if (t.waitStatus <= 0)
- s = t;
- }
- if (s != null)
- LockSupport.unpark(s.thread);
- }
这里首先明确,这里传进来的node是啥?是头节点!!!!,一定要明确这个,博主就是因为刚开始没明确这个,半天没明白,因为唤醒一定是唤醒头节点之后的waitStatus不为1的结点
首先判断头节点,如果是-1则设置为0,这个中间状态,表示有结点被唤醒了,
然后拿到,head的后继节点,进行判断,如何是null或者waitStatus >0,(就是1,CANCELLED,代表被取消了),这个时候从尾部开始遍历,剔除waitStatus >0的节点,找到第一个waitStatus <=0的节点,用LockSupport.unpark(s.thread);将其唤醒,唤醒之后的线程回到acquireQueued方法中,
- final boolean acquireQueued(final Node node, int arg) {
- boolean failed = true;
- try {
- boolean interrupted = false;
- for (;;) {
- //被阻塞的线程,被唤醒后在进行循环,
- //然后通过return interrupted;
- final Node p = node.predecessor();
- if (p == head && tryAcquire(arg)) {
- setHead(node);
- p.next = null; // help GC
- failed = false;
- return interrupted;
- }
- if (shouldParkAfterFailedAcquire(p, node) &&
- parkAndCheckInterrupt())
- interrupted = true;
- }
- } finally {
- if (failed)
- cancelAcquire(node);
- }
- }
首先,将该结点设置为head,然后将老head指向null,帮助gc回收,然后return返回,至此线程自由
那么此时该队列为
五,总结
写了很久,如果有啥不对的地方,欢迎大家指正
以上就是一篇彻底看懂ReentrantLock,AQS的源码的详细内容,更多关于一篇彻底看懂ReentrantLock,AQS的源码的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/weixin_44213940/article/details/115432633