服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C/C++实现图形学扫描线填充算法

C/C++实现图形学扫描线填充算法

2021-08-31 15:22qq_36573282 C/C++

这篇文章主要介绍了C/C++实现图形学扫描线填充算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

在上图形学课的时候,学习了扫描线填充算法。不过在完成实验的时候在真正理解了该算法,在此记录一下,如果有表达上的错误,欢迎指正!

扫描线填充算法通过在与图形相交的第(1,2)、(3,4)... 边之间划线不断不断填充图形。因此,在扫描时就需要确定什么时候与图形的某条边相交、划线的时候x的范围是多少以及划线时是从哪个交点画至另一个交点。

结构体如下所示:

C/C++实现图形学扫描线填充算法

为了节省存储的空间,边表项也使用链表结构,将图形中ymin值相同的边链接在同一个边表项后,这样在扫描的时候方便添加。

具体的流程如下:

一、初始化活动边表

1. 统计并初始化表项

2. 将每条边分别链接在表项后

二、 绘制与填充

1. 取出当前与扫描线相交的边

① 取出ymin 大于当前扫描线的y值的边

② 删除ymax 小于等于当前扫描线的边(①②过程可以排除掉与扫描线平行的边)

2. 将取出的边按照左右顺序排序(根据边的最低点的坐标与直线的斜率判断)

3. 划线并直接在原结构上修改边的x值(因为是在一个函数内,修改保存的值仅限于函数内,并不影响main函数中的值)

具体的代码如下所示,使用的库是EasyX(可以在http://www.easyx.cn/下载):

  1. #include "graphics.h"
  2. #include "stdio.h"
  3. #include "conio.h"
  4. #include <stdlib.h>
  5. #include <math.h>
  6. #include <cmath>
  7. #include <iostream>
  8.  
  9. using namespace std;
  10. #define MAX_VOL 20
  11. //多边形的边的数据结构
  12. typedef struct Edge
  13. {
  14. int y_max, y_min; //该有向边的y坐标的最大值与最小值
  15. double x, deltax; //该有向边的x的最小值以及x的变化的量(1/斜率)
  16. struct Edge* next; //指向下一条边的指针
  17.  
  18. }Edge;
  19. //活动边表表项
  20. typedef struct TableItem
  21. {
  22. int curr_y; //该表项的y坐标值 ymin
  23. Edge *firstNode; //该表项的首个节点,如果没有,NULL
  24. struct TableItem *next; //指向下一个活动边表表项的指针
  25. }TableItem;
  26. //活动边表结构体
  27. typedef struct Table
  28. {
  29. TableItem *itemHeader; //活动边表的表项header
  30. int item_count; //活动边表表项的个数
  31. }ET;
  32.  
  33. class Point
  34. {
  35. private:
  36. int x1, x2, y1, y2;
  37. public:
  38. Point(int x1, int y1, int x2, int y2)
  39. {
  40. this->x1 = x1;
  41. this->x2 = x2;
  42. this->y1 = y1;
  43. this->y2 = y2;
  44. }
  45. //返回两个点之中的ymax
  46. int YMax()
  47. {
  48. return (y1 > y2 ? y1 : y2);
  49. }
  50. //返回ymin
  51. int YMin()
  52. {
  53. return (y1 < y2 ? y1 : y2);
  54. }
  55. //返回ymin 端点的x 值
  56. int x()
  57. {
  58. return (y1 < y2 ? x1 : x2);
  59. }
  60. //返回直线的斜率,按照传入的参数的顺序
  61. double KOfLine()
  62. {
  63. return ((y2 - y1)*1.0 / (x2 - x1));
  64. }
  65.  
  66. };
  67.  
  68. class Solution
  69. {
  70. public:
  71. //根据多边形初始化活动表
  72. //参数 T 活动边表
  73. //参数edges 用于初始化的边数组
  74. //参数 edge_num 用于初始化的边的个数
  75. void Init(ET &T, Edge *edges, int edge_num)
  76. {
  77. //初始化活动边表结构体
  78. T.item_count = 0;
  79. T.itemHeader = NULL;
  80. int ymins[20]; //存储ymin ,决定活动边表的个数以及表项的内容
  81.  
  82. T.item_count = TableItemCount(edges, edge_num, ymins);
  83. T.itemHeader = (TableItem*)malloc(sizeof(TableItem));
  84. T.itemHeader->curr_y = ymins[0];
  85. T.itemHeader->firstNode = NULL;
  86. T.itemHeader->next = NULL;
  87. TableItem *p = T.itemHeader; //指向头结点
  88. for (int i = 1; i<T.item_count; ++i)
  89. {
  90. //依次创建活动边表的各个表项,并连接在一起
  91. TableItem *e = (TableItem*)malloc(sizeof(TableItem));
  92. e->curr_y = ymins[i];
  93. e->firstNode = NULL;
  94. e->next = NULL;
  95. p->next = e;
  96. p = e;
  97. }
  98.  
  99. //按照用于初始化的边数组初始化活动边表
  100. p = T.itemHeader;
  101. for (int j = 0; j < edge_num; ++j) {
  102. this->AppendNode(T, edges[j].y_min, edges[j]);
  103. }
  104. //方法结束
  105. ////////测试区////////////
  106. //cout << "遍历表项。。。。。" << endl;
  107. //p = T.itemHeader;
  108. //while (p != NULL) {
  109. // cout << "当前表项y : " << p->curr_y << endl;
  110. // Edge *ele = p->firstNode;
  111. // while (ele != NULL) {
  112. // cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max <<
  113. // "deltax = " << ele->deltax << endl;
  114. // ele = ele->next;
  115. // }
  116.  
  117. // p = p->next;
  118. //}
  119. ////////测试删除结点////////
  120. //p = T.itemHeader;
  121. //int yMax = 0;
  122. //while (yMax < 24) {
  123. // p = T.itemHeader;
  124. // cout << "-------------------------------" << endl;
  125. // cout << "当前y max :" << yMax << endl;
  126. // this->DeleteNode(T, yMax);
  127. // while (p != NULL) {
  128. // cout << "当前表项y : " << p->curr_y << endl;
  129. // Edge *ele = p->firstNode;
  130. // while (ele != NULL) {
  131. // cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max <<
  132. // "deltax = " << ele->deltax << endl;
  133. // ele = ele->next;
  134. // }
  135. // p = p->next;
  136. // }
  137. // yMax++;
  138. //}
  139.  
  140. /////////////////////////
  141.  
  142. }
  143.  
  144. //用于根据边数组计算需要多少个表项
  145. //表项的个数取决于边的ymin的个数
  146. //返回值 ymin 数组
  147. //返回 item_num 表项的个数
  148. int TableItemCount(Edge *edges, int edge_num, int* ymins)
  149. {
  150. int count = 0;
  151. for (int i = 0; i<edge_num; ++i)
  152. {
  153. if (!isInArray(ymins, edges[i].y_min, count))
  154. {
  155. ymins[count++] = edges[i].y_min;
  156. }
  157. }
  158. //将ymin 升序排序
  159. for (int j = 0; j<count - 1; ++j)
  160. {
  161. for (int k = j + 1; k<count; ++k)
  162. {
  163. if (ymins[k] < ymins[j])
  164. {
  165. int tmp = ymins[k];
  166. ymins[k] = ymins[j];
  167. ymins[j] = tmp;
  168. }
  169. }
  170. }
  171. return count;
  172.  
  173. }
  174. //判断一个整数是否在整数数组中
  175. bool isInArray(int *array, int e, int array_length)
  176. {
  177. for (int i = 0; i<array_length; ++i)
  178. {
  179. if (array[i] == e)
  180. {
  181. return true;
  182. }
  183. }
  184. return false;
  185. }
  186.  
  187. //传入edges数组,初始化,返回Edge 结构体数组
  188. //因为需要是封闭图形,所以,在边数组中,最后的点的坐标设为起始点的坐标,传入的edge_num 不变
  189. Edge* InitEdges(int *edges, int edge_num)
  190. {
  191. Edge *newEdges = (Edge*)malloc(sizeof(Edge)*edge_num);
  192. int j = 0;
  193. for (int i = 0; i<edge_num; ++i)
  194. {
  195. Point point(edges[2 * i], edges[2 * i + 1], edges[2 * (i + 1)], edges[2 * (i + 1) + 1]);
  196. Edge *newEdge = (Edge*)malloc(sizeof(Edge));
  197. newEdge->x = (double)point.x();
  198. newEdge->y_max = point.YMax();
  199. newEdge->y_min = point.YMin();
  200. newEdge->deltax = 1.0 / point.KOfLine(); // 斜率分之一
  201. newEdge->next = NULL;
  202. newEdges[j++] = *(newEdge);
  203. }
  204. return newEdges;
  205. }
  206. //删除所有的小于ymax 的节点
  207. //参数 curr_ymax 当前扫描线的y值
  208. void DeleteNode(ET &T, int curr_ymax)
  209. {
  210. TableItem *p = T.itemHeader; //指向表项的指针
  211. while (p != NULL) {
  212. Edge *item = p->firstNode; //指向表项的邻接链表的指针
  213. Edge *itempre = p->firstNode; //指向前一个边结点的指针
  214. while (item != NULL) {
  215. if (item->y_max <= curr_ymax) { //删除该结点
  216. T.item_count--; //当前活动边表中的边的个数-1
  217. //判断该结点是否是该链表的头结点
  218. if (item == p->firstNode) {
  219. p->firstNode = (Edge*)malloc(sizeof(Edge));
  220. p->firstNode = item->next;
  221. free(item); //释放该结点
  222. item = p->firstNode; //重新指向firstnode结点
  223. itempre = p->firstNode;
  224. }
  225. else {
  226. itempre->next = item->next; //修改前一个结点的next的值
  227. free(item); //删除该指针
  228. item = itempre->next; //继续向后遍历
  229. }
  230. }//if (item->y_max < curr_ymax)
  231. else {
  232. itempre = item;
  233. item = item->next;
  234. }
  235. }//while (item != NULL)
  236. p = p->next;
  237. }//while (p != NULL)
  238.  
  239. }
  240.  
  241. //将指定y值的节点添加到该表项, 该方法插入的顺序取决于调用该方法传入参数的顺序
  242. //该方法将新节点插入到对应表项的邻接链表的末尾
  243. void AppendNode(ET &T, int place_y, Edge &e)
  244. {
  245. ////////测试区//////////
  246. //cout << "In Append , place_y = " << place_y << " e.ymin = " << e.y_min << endl;
  247. //cout << "item count" << T.item_count << endl;
  248.  
  249. ///////////////////////
  250. TableItem *p = T.itemHeader; //指向活动边表的头结点
  251. //将边e插入到对应的表项
  252. //之后在该表项中按照x的大小确定插入的位置
  253. for (int i = 0; i < T.item_count; ++i) {
  254. if (p->curr_y == e.y_min)
  255. break;
  256. p = p->next;
  257. }
  258. //将边插入到该表项的邻接链表中
  259. Edge *egp = p->firstNode; //egp 指向该表项的首个邻接节点
  260. if (egp == NULL) { //如果该表项还没有节点,直接插入
  261. egp = (Edge*)malloc(sizeof(Edge));
  262. *(egp) = e;
  263. egp->next = NULL;
  264. p->firstNode = egp;
  265. }
  266. else {
  267. Edge *pre = egp;
  268. while (egp != NULL) {
  269. pre = egp;
  270. egp = egp->next;
  271. }
  272. Edge *newedge = (Edge*)malloc(sizeof(Edge));
  273. *(newedge) = e;
  274. pre->next = newedge;
  275. newedge->next = NULL;
  276. }
  277.  
  278. }
  279.  
  280. //绘图的方法
  281. void Draw(ET T) {
  282. //首先取出ymin 值小于当前扫描线y 的边
  283. //按照顺序配对
  284. int curr_y = 0, curr_edge_num = 0, curr_gy = graphy(curr_y); //图形坐标的扫描线的y坐标
  285. Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //用于存放指针的数组
  286. //将每条边的记录的x 化为图形上的坐标
  287. TableItem *p = T.itemHeader;
  288. while (p != NULL) {
  289. Edge *q = p->firstNode;
  290. while (q != NULL) {
  291. q->x = graphx(q->x);
  292. q = q->next;
  293. }
  294. p = p->next;
  295. }
  296.  
  297. for (; curr_y < 30; curr_gy--, curr_y = realy(curr_gy)) {
  298. this->DeleteNode(T, curr_y); //删除当前扫描过的边(ymax 小于 curr_y)
  299. currEdges = this->GetCurrEdges(T, curr_y, curr_edge_num); //获取当前与扫描线相交的边
  300. //对获取到的边进行排序、配对
  301. for (int i = 0; i < curr_edge_num - 1; ++i) {
  302. for (int j = i + 1; j < curr_edge_num; ++j) {
  303. if (this->IsRightTo(currEdges[i], currEdges[j])) {
  304. Edge tmp = currEdges[i];
  305. currEdges[i] = currEdges[j];
  306. currEdges[j] = tmp;
  307. }
  308. }
  309.  
  310. }
  311.  
  312. ////
  313. // getchar();
  314. // cout << "------------------------------" << endl;
  315.  
  316. setcolor(BLUE);
  317. for (int j = 0; j < curr_edge_num / 2; ++j) {
  318.  
  319. ///
  320.  
  321. // cout << "line :" << (int)currEdges[2 * j].x << " , " << curr_y << "----->" << (int)currEdges[2 * j + 1].x << " , " << curr_y <<
  322. // " edge_num = " << curr_edge_num << endl;
  323.  
  324. line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy);
  325. Edge *curr_edge1 = this->GetThisEdge(T, currEdges[2 * j].x, currEdges[2 * j].y_min,
  326. currEdges[2 * j].y_max); //获取当前边的指针,修改x值,保存修改
  327. curr_edge1->x += curr_edge1->deltax;
  328. Edge *curr_edge2 = this->GetThisEdge(T, currEdges[2 * j + 1].x, currEdges[2 * j + 1].y_min,
  329. currEdges[2 * j + 1].y_max);
  330. curr_edge2->x += curr_edge2->deltax;
  331.  
  332. //line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy); //在两条直线之间划线
  333. //currEdges[2 * j].x += currEdges[2 * j].deltax;
  334. //currEdges[2 * j + 1].x += currEdges[2 * j + 1].deltax; //更新x 的坐标值
  335. }
  336.  
  337. //////////测试模拟输出划线///////////////
  338. /*cout << "------------------------------------------" << endl;
  339. cout << "curr_y = " << curr_y << endl;
  340. cout << "当前扫描的边的个数 = " << curr_edge_num << endl;
  341. for (int i = 0; i < curr_edge_num / 2; ++i) {
  342. cout << "draw line bwtwen :" << endl;
  343. cout << "直线1 x = " << currEdges[2 * i].x << " ymin = " << currEdges[2 * i].y_min <<
  344. " ymax = " << currEdges[2 * i].y_max << endl;
  345. cout << "直线2 x = " << currEdges[2 * i + 1].x << " ymin = " << currEdges[2 * i + 1].y_min <<
  346. " ymax = " << currEdges[2 * i + 1].y_max << endl;
  347.  
  348. }*/
  349.  
  350. ////////////////////////////////////
  351. //在1,2 3,4 ... 边之间划线
  352. //TODO 坐标转换以及划线
  353.  
  354. }
  355.  
  356. ///////测试区/////////////////
  357. //cout << "-------------------------------------" << endl;
  358. //cout << "当前取出的边。。。。。。。。。。" << endl;
  359. //cout << "curr_edge_num = " << curr_edge_num << endl;
  360. //for (int i = 0; i < curr_edge_num; ++i) {
  361. // cout << "x = " << currEdges[i].x << " y_min = " << currEdges[i].y_min << " y_max = " << currEdges[i].y_max << endl;
  362. //}
  363.  
  364. ////////////////////////////////
  365.  
  366. }
  367.  
  368. //返回某个边的指针
  369. //可通过此指针修改原结构体中边的x的值
  370. Edge* GetThisEdge(ET T, double x, int y_min, int y_max) {
  371. TableItem *p = T.itemHeader;
  372. while (p != NULL) {
  373. Edge *q = p->firstNode;
  374. while (q != NULL) {
  375. if ((q->x == x) && (q->y_max == y_max) && (q->y_min == y_min)) {
  376. return q;
  377. }
  378. q = q->next;
  379. }
  380. p = p->next;
  381. }
  382.  
  383. return NULL;
  384. }
  385.  
  386. //用于坐标转换的函数
  387. double graphx(double x) {
  388. return x * 10 + 100;
  389. }
  390.  
  391. double realx(double gx) {
  392. return (gx - 100)*1.0 / 10;
  393. }
  394.  
  395. int graphy(int y) {
  396. return 400 - y * 10;
  397. }
  398.  
  399. int realy(int gy) {
  400. return (400 - gy) / 10;
  401. }
  402.  
  403. //绘制坐标系
  404. void DrawCoordinate(int edges[], int edge_num) {
  405. line(100, 100, 100, 400);
  406. line(100, 400, 400, 400);
  407. outtextxy(85, 95, "y↑");
  408. outtextxy(400, 393, "→x");
  409.  
  410. for (int i = 0; i < 30; ++i) {
  411. if (i % 2 != 0)
  412. continue;
  413. //TODO 字符转换
  414. outtextxy(i * 10 + 100, 390, "|");
  415. char *text = (char*)malloc(sizeof(char) * 10);
  416. itoa(i,text,10);
  417. outtextxy(i * 10 + 100, 410, text);
  418. free(text);
  419. }
  420.  
  421. for (int j = 0; j < 30; ++j) {
  422. if (j % 2 != 0)
  423. continue;
  424. outtextxy(100, 400 - j * 10, "_");
  425. char *str = (char*)malloc(sizeof(char)*10);
  426. itoa(j,str,10);
  427. outtextxy(100, 400 - j * 10,str);
  428. free(str);
  429. }
  430.  
  431. //绘制原多边形
  432. for (int k = 0; k < edge_num; ++k) {
  433. setcolor(YELLOW);
  434. int x1 = 0, x2 = 0, y1 = 0, y2 = 0;
  435. x1 = edges[2 * k] * 10 + 100;
  436. y1 = 400 - edges[2 * k + 1] * 10;
  437. x2 = edges[2 * (k + 1)] * 10 + 100;
  438. y2 = 400 - edges[2 * (k + 1) + 1] * 10;
  439. line(x1, y1, x2, y2);
  440. }
  441.  
  442. }
  443.  
  444. //获取当前的涉及的扫描线的边
  445. //即取出当前ymin 小于curr_y的边
  446. //通过参数返回取出的边的个数
  447. Edge* GetCurrEdges(ET T, int curr_y, int &edge_num) {
  448. Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //分配最大容量
  449. int i = 0;
  450. TableItem *p = T.itemHeader;
  451. while (p != NULL) {
  452. Edge *q = p->firstNode;
  453. while (q != NULL) {
  454. if (q->y_min <= curr_y) { //等于号很重要,否则会在图形中出现空白区
  455. currEdges[i++] = *q; //将当前边的值取出(不改变原活动表)
  456. }
  457. q = q->next;
  458. }
  459. p = p->next;
  460. }
  461. edge_num = i; //保存取出的边的个数
  462. return currEdges;
  463. }
  464.  
  465. //判断edge1 是否在edge2 的右边的方法
  466. bool IsRightTo(Edge edge1, Edge edge2) {
  467. if (edge1.x > edge2.x) //如果edge1最低点的x坐标小于edge2的最低点的x的坐标,则edge1在edge2的右边
  468. return true;
  469. else {
  470. if (edge1.x < edge2.x)
  471. return false;
  472. double x_max1 = (edge1.y_max - (edge1.y_min - 1.0 / edge1.deltax*edge1.x))*edge1.deltax;
  473. double x_max2 = (edge2.y_max - (edge2.y_min - 1.0 / edge2.deltax*edge2.x))*edge2.deltax;
  474. if (x_max1 > x_max2)
  475. return true;
  476. }
  477. return false;
  478. }
  479.  
  480. };
  481.  
  482. int main()
  483. {
  484. //TODO 测试活动边表初始化
  485. Solution solution;
  486. int edges[] = { 4,18,14,14,26,22,26,10,14,2,4,6,4,18 };
  487. Edge* newEdges = solution.InitEdges(edges, 6);
  488. ET T;
  489. solution.Init(T, newEdges, 6); //初始化活动边表
  490.  
  491. initgraph(800, 800, SHOWCONSOLE);
  492. solution.DrawCoordinate(edges, 6);
  493. solution.Draw(T);
  494. getchar();
  495. closegraph();
  496. return 0;
  497. }

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

原文链接:https://blog.csdn.net/qq_36573282/article/details/78633319

延伸 · 阅读

精彩推荐