之前使用kafka的KafkaStream,让每个消费者和对应的patition建立对应的流来读取kafka上面的数据,如果comsumer得到数据,那么kafka就会自动去维护该comsumer的offset,例如在获取到kafka的消息后正准备入库(未入库),但是消费者挂了,那么如果让kafka自动去维护offset,它就会认为这条数据已经被消费了,那么会造成数据丢失。
但是kafka可以让你自己去手动提交,如果在上面的场景中,那么需要我们手动commit,如果comsumer挂了 那么程序就不会执行commit这样的话 其他同group的消费者又可以消费这条数据,保证数据不丢,先要做如下设置:
1
2
|
//设置不自动提交,自己手动更新offset properties.put( "enable.auto.commit" , "false" ); |
使用如下api提交:
1
|
consumer.commitSync(); |
注意:
刚做了个测试,如果我从kafka中取出5条数据,分别为1,2,3,4,5,如果消费者在执行一些逻辑在执行1,2,3,4的时候都失败了未提交commit,然后消费5做逻辑成功了提交了commit,那么offset也会被移动到5那一条数据那里,1,2,3,4 相当于也会丢失
如果是做消费者取出数据执行一些操作,全部都失败的话,然后重启消费者,这些数据会从失败的时候重新开始读取
所以消费者还是应该自己做容错机制
测试项目结构如下:
其中ConsumerThreadNew类:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
package com.lijie.kafka; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * * @Filename ConsumerThreadNew.java * * @Description * * @Version 1.0 * * @Author Lijie * * @Email lijiewj39069@touna.cn * * @History *<li>Author: Lijie</li> *<li>Date: 2017年3月21日</li> *<li>Version: 1.0</li> *<li>Content: create</li> * */ public class ConsumerThreadNew implements Runnable { private static Logger LOG = LoggerFactory.getLogger(ConsumerThreadNew. class ); //KafkaConsumer kafka生产者 private KafkaConsumer<String, String> consumer; //消费者名字 private String name; //消费的topic组 private List<String> topics; //构造函数 public ConsumerThreadNew(KafkaConsumer<String, String> consumer, String topic, String name) { super (); this .consumer = consumer; this .name = name; this .topics = Arrays.asList(topic); } @Override public void run() { consumer.subscribe(topics); List<ConsumerRecord<String, String>> buffer = new ArrayList<>(); // 批量提交数量 final int minBatchSize = 1 ; while ( true ) { ConsumerRecords<String, String> records = consumer.poll( 100 ); for (ConsumerRecord<String, String> record : records) { LOG.info( "消费者的名字为:" + name + ",消费的消息为:" + record.value()); buffer.add(record); } if (buffer.size() >= minBatchSize) { //这里就是处理成功了然后自己手动提交 consumer.commitSync(); LOG.info( "提交完毕" ); buffer.clear(); } } } } |
MyConsume类如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
package com.lijie.kafka; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * * @Filename MyConsume.java * * @Description * * @Version 1.0 * * @Author Lijie * * @Email lijiewj39069@touna.cn * * @History *<li>Author: Lijie</li> *<li>Date: 2017年3月21日</li> *<li>Version: 1.0</li> *<li>Content: create</li> * */ public class MyConsume { private static Logger LOG = LoggerFactory.getLogger(MyConsume. class ); public MyConsume() { // TODO Auto-generated constructor stub } public static void main(String[] args) { Properties properties = new Properties(); properties.put( "bootstrap.servers" , "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093" ); //设置不自动提交,自己手动更新offset properties.put( "enable.auto.commit" , "false" ); properties.put( "auto.offset.reset" , "latest" ); properties.put( "zookeeper.connect" , "10.0.4.141:2181,10.0.4.142:2181,10.0.4.143:2181" ); properties.put( "session.timeout.ms" , "30000" ); properties.put( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ); properties.put( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ); properties.put( "group.id" , "lijieGroup" ); properties.put( "zookeeper.connect" , "192.168.80.123:2181" ); properties.put( "auto.commit.interval.ms" , "1000" ); ExecutorService executor = Executors.newFixedThreadPool( 5 ); //执行消费 for ( int i = 0 ; i < 7 ; i++) { executor.execute( new ConsumerThreadNew( new KafkaConsumer<String, String>(properties), "lijietest" , "消费者" + (i + 1 ))); } } } |
MyProducer类如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
package com.lijie.kafka; import java.util.Properties; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; /** * * * @Filename MyProducer.java * * @Description * * @Version 1.0 * * @Author Lijie * * @Email lijiewj39069@touna.cn * * @History *<li>Author: Lijie</li> *<li>Date: 2017年3月21日</li> *<li>Version: 1.0</li> *<li>Content: create</li> * */ public class MyProducer { private static Properties properties; private static KafkaProducer<String, String> pro; static { //配置 properties = new Properties(); properties.put( "bootstrap.servers" , "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093" ); //序列化类型 properties .put( "value.serializer" , "org.apache.kafka.common.serialization.StringSerializer" ); properties.put( "key.serializer" , "org.apache.kafka.common.serialization.StringSerializer" ); //创建生产者 pro = new KafkaProducer<>(properties); } public static void main(String[] args) throws Exception { produce( "lijietest" ); } public static void produce(String topic) throws Exception { //模拟message // String value = UUID.randomUUID().toString(); for ( int i = 0 ; i < 10000 ; i++) { //封装message ProducerRecord<String, String> pr = new ProducerRecord<String, String>(topic, i + "" ); //发送消息 pro.send(pr); Thread.sleep( 1000 ); } } } |
pom文件如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
< project xmlns = "http://maven.apache.org/POM/4.0.0" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" > < modelVersion >4.0.0</ modelVersion > < groupId >lijie-kafka-offset</ groupId > < artifactId >lijie-kafka-offset</ artifactId > < version >0.0.1-SNAPSHOT</ version > < dependencies > < dependency > < groupId >org.apache.kafka</ groupId > < artifactId >kafka_2.11</ artifactId > < version >0.10.1.1</ version > </ dependency > < dependency > < groupId >org.apache.hadoop</ groupId > < artifactId >hadoop-common</ artifactId > < version >2.2.0</ version > </ dependency > < dependency > < groupId >org.apache.hadoop</ groupId > < artifactId >hadoop-hdfs</ artifactId > < version >2.2.0</ version > </ dependency > < dependency > < groupId >org.apache.hadoop</ groupId > < artifactId >hadoop-client</ artifactId > < version >2.2.0</ version > </ dependency > < dependency > < groupId >org.apache.hbase</ groupId > < artifactId >hbase-client</ artifactId > < version >1.0.3</ version > </ dependency > < dependency > < groupId >org.apache.hbase</ groupId > < artifactId >hbase-server</ artifactId > < version >1.0.3</ version > </ dependency > < dependency > < groupId >org.apache.hadoop</ groupId > < artifactId >hadoop-hdfs</ artifactId > < version >2.2.0</ version > </ dependency > < dependency > < groupId >jdk.tools</ groupId > < artifactId >jdk.tools</ artifactId > < version >1.7</ version > < scope >system</ scope > < systemPath >${JAVA_HOME}/lib/tools.jar</ systemPath > </ dependency > < dependency > < groupId >org.apache.httpcomponents</ groupId > < artifactId >httpclient</ artifactId > < version >4.3.6</ version > </ dependency > </ dependencies > < build > < plugins > < plugin > < groupId >org.apache.maven.plugins</ groupId > < artifactId >maven-compiler-plugin</ artifactId > < configuration > < source >1.7</ source > < target >1.7</ target > </ configuration > </ plugin > </ plugins > </ build > </ project > |
补充:kafka javaAPI 手动维护偏移量
我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
package com.kafka; import kafka.javaapi.PartitionMetadata; import kafka.javaapi.consumer.SimpleConsumer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.consumer.OffsetAndMetadata; import org.apache.kafka.common.TopicPartition; import org.junit.Test; import java.util.*; public class ConsumerManageOffet { //broker的地址, //与老版的kafka的区别是,新版本的kafka把偏移量保存到了broker,而老版本的是把偏移量保存到了zookeeper中 //所以在读取数据时,应当设置broker的地址 private static String ips = "192.168.136.150:9092,192.168.136.151:9092,192.168.136.152:9092" ; public static void main(String[] args) { Properties props = new Properties(); props.put( "bootstrap.servers" ,ips); props.put( "group.id" , "test02" ); props.put( "auto.offset.reset" , "earliest" ); props.put( "max.poll.records" , "10" ); props.put( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ); props.put( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ); KafkaConsumer<String,String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList( "my-topic" )); System.out.println( "---------------------" ); while ( true ){ ConsumerRecords<String,String> records = consumer.poll( 10 ); System.out.println( "+++++++++++++++++++++++" ); for (ConsumerRecord<String,String> record: records){ System.out.println( "---" ); System.out.printf( "offset=%d,key=%s,value=%s%n" ,record.offset(), record.key(),record.value()); } } } //手动维护偏移量 @Test public void autoManageOffset2(){ Properties props = new Properties(); //broker的地址 props.put( "bootstrap.servers" ,ips); //这是消费者组 props.put( "group.id" , "groupPP" ); //设置消费的偏移量,如果以前消费过则接着消费,如果没有就从头开始消费 props.put( "auto.offset.reset" , "earliest" ); //设置自动提交偏移量为false props.put( "enable.auto.commit" , "false" ); //设置Key和value的序列化 props.put( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ); props.put( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ); //new一个消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); //指定消费的topic consumer.subscribe(Arrays.asList( "my-topic" )); while ( true ){ ConsumerRecords<String, String> records = consumer.poll( 1000 ); //通过records获取这个集合中的数据属于那几个partition Set<TopicPartition> partitions = records.partitions(); for (TopicPartition tp : partitions){ //通过具体的partition把该partition中的数据拿出来消费 List<ConsumerRecord<String, String>> partitionRecords = records.records(tp); for (ConsumerRecord r : partitionRecords){ System.out.println(r.offset() + " " +r.key()+ " " +r.value()); } //获取新这个partition中的最后一条记录的offset并加1 那么这个位置就是下一次要提交的offset long newOffset = partitionRecords.get(partitionRecords.size() - 1 ).offset() + 1 ; consumer.commitSync(Collections.singletonMap(tp, new OffsetAndMetadata(newOffset))); } } } } |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/qq_20641565/article/details/64440425