服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - OpenCV实现拼接图像的简单方法

OpenCV实现拼接图像的简单方法

2021-07-29 13:36iteye_18380 C/C++

这篇文章主要为大家详细介绍了OpenCV实现拼接图像的简单方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了OpenCV实现拼接图像的具体方法,供大家参考,具体内容如下

用iphone拍摄的两幅图像:

 OpenCV实现拼接图像的简单方法

 OpenCV实现拼接图像的简单方法

 拼接后的图像:

 OpenCV实现拼接图像的简单方法

相关代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
//读取图像
Mat leftImg=imread("left.jpg");
Mat rightImg=imread("right.jpg");
if(leftImg.data==NULL||rightImg.data==NULL)
 return;
 
//转化成灰度图
Mat leftGray;
Mat rightGray;
cvtColor(leftImg,leftGray,CV_BGR2GRAY);
cvtColor(rightImg,rightGray,CV_BGR2GRAY);
 
//获取两幅图像的共同特征点
int minHessian=400;
SurfFeatureDetector detector(minHessian);
vector<KeyPoint> leftKeyPoints,rightKeyPoints;
detector.detect(leftGray,leftKeyPoints);
detector.detect(rightGray,rightKeyPoints);
SurfDescriptorExtractor extractor;
Mat leftDescriptor,rightDescriptor;
extractor.compute(leftGray,leftKeyPoints,leftDescriptor);
extractor.compute(rightGray,rightKeyPoints,rightDescriptor);
FlannBasedMatcher matcher;
vector<DMatch> matches;
matcher.match(leftDescriptor,rightDescriptor,matches);
int matchCount=leftDescriptor.rows;
if(matchCount>15)
{
 matchCount=15;
 sort(matches.begin(),matches.begin()+leftDescriptor.rows,DistanceLessThan);
}
vector<Point2f> leftPoints;
vector<Point2f> rightPoints;
for(int i=0; i<matchCount; i++)
{
 leftPoints.push_back(leftKeyPoints[matches[i].queryIdx].pt);
 rightPoints.push_back(rightKeyPoints[matches[i].trainIdx].pt);
}
 
//获取左边图像到右边图像的投影映射关系
Mat homo=findHomography(leftPoints,rightPoints);
Mat shftMat=(Mat_<double>(3,3)<<1.0,0,leftImg.cols, 0,1.0,0, 0,0,1.0);
 
//拼接图像
Mat tiledImg;
warpPerspective(leftImg,tiledImg,shftMat*homo,Size(leftImg.cols+rightImg.cols,rightImg.rows));
rightImg.copyTo(Mat(tiledImg,Rect(leftImg.cols,0,rightImg.cols,rightImg.rows)));
 
//保存图像
imwrite("tiled.jpg",tiledImg);
 
//显示拼接的图像
imshow("tiled image",tiledImg);
waitKey(0);

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/iteye_18380/article/details/82554544

延伸 · 阅读

精彩推荐