本文实例为大家分享了java查找图中两点之间所有路径的具体代码,基于邻接表,供大家参考,具体内容如下
图类:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
package graph1; import java.util.linkedlist; import graph.graph.edgenode; public class graph { class edgenode{ int adjvex; edgenode nextedge; } class vexnode{ int data; edgenode firstedge; boolean isvisted; public boolean isvisted() { return isvisted; } public void setvisted( boolean isvisted) { this .isvisted = isvisted; } } vexnode[] vexsarray ; int [] visited = new int [ 100 ]; boolean [] isvisited = new boolean [ 100 ]; public void linklast(edgenode target,edgenode node) { while (target.nextedge!= null ) { target=target.nextedge; } target.nextedge=node; } public int getposition( int data) { for ( int i= 0 ;i<vexsarray.length;i++) { if (data==vexsarray[i].data) { return i; } } return - 1 ; } public void buildgraph( int [] vexs, int [][] edges ) { int vlen = vexs.length; int elen = edges.length; vexsarray = new vexnode[vlen]; for ( int i= 0 ;i<vlen;i++) { vexsarray[i] = new vexnode(); vexsarray[i].data = vexs[i]; vexsarray[i].firstedge = null ; } for ( int i= 0 ;i<elen;i++) { int a = edges[i][ 0 ]; int b = edges[i][ 1 ]; int start = getposition(a); int end = getposition(b); edgenode edgenode = new edgenode(); edgenode.adjvex = end; if (vexsarray[start].firstedge == null ) { vexsarray[start].firstedge = edgenode; } else { linklast(vexsarray[start].firstedge,edgenode); } } } public void printgraph() { for ( int i= 0 ;i<vexsarray.length;i++) { system.out.printf( "%d--" ,vexsarray[i].data); edgenode node = vexsarray[i].firstedge; while (node!= null ) { system.out.printf( "%d(%d)--" ,node.adjvex,vexsarray[node.adjvex].data); node = node.nextedge; } system.out.println( "\n" ); } } |
算法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
package graph1; import java.util.hashmap; import java.util.map; import java.util.stack; import javax.swing.plaf.synth.synthstyle; import graph1.graph.edgenode; public class findallpath { //代表某节点是否在stack中,避免产生回路 public map<integer, boolean > states= new hashmap(); //存放放入stack中的节点 public stack<integer> stack= new stack(); //打印stack中信息,即路径信息 public void printpath(){ stringbuilder sb= new stringbuilder(); for (integer i :stack){ sb.append(i+ "->" ); } sb.delete(sb.length()- 2 ,sb.length()); system.out.println(sb.tostring()); } //得到x的邻接点为y的后一个邻接点位置,为-1说明没有找到 public int getnextnode(graph graph, int x, int y){ int next_node=- 1 ; edgenode edge=graph.vexsarray[x].firstedge; if ( null !=edge&&y==- 1 ){ int n=edge.adjvex; //元素还不在stack中 if (!states.get(n)) return n; return - 1 ; } while ( null !=edge){ //节点未访问 if (edge.adjvex==y){ if ( null !=edge.nextedge){ next_node=edge.nextedge.adjvex; if (!states.get(next_node)) return next_node; } else return - 1 ; } edge=edge.nextedge; } return - 1 ; } public void visit(graph graph, int x, int y){ //初始化所有节点在stack中的情况 for ( int i= 0 ;i<graph.vexsarray.length;i++){ states.put(i, false ); } //stack top元素 int top_node; //存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点 int adjvex_node=- 1 ; int next_node; stack.add(x); states.put(x, true ); while (!stack.isempty()){ top_node=stack.peek(); //找到需要访问的节点 if (top_node==y){ //打印该路径 printpath(); adjvex_node=stack.pop(); states.put(adjvex_node, false ); } else { //访问top_node的第advex_node个邻接点 next_node=getnextnode(graph,top_node,adjvex_node); if (next_node!=- 1 ){ stack.push(next_node); //置当前节点访问状态为已在stack中 states.put(next_node, true ); //临接点重置 adjvex_node=- 1 ; } //不存在临接点,将stack top元素退出 else { //当前已经访问过了top_node的第adjvex_node邻接点 adjvex_node=stack.pop(); //不在stack中 states.put(adjvex_node, false ); } } } } } |
测试类:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
package graph1; import java.util.iterator; import graph1.graph.vexnode; public class tset2 { public static void main(string[] args) { int [] vexs = { 0 , 1 , 2 , 3 , 4 }; int [][] edges = { { 0 , 1 }, { 0 , 3 }, { 1 , 0 }, { 1 , 2 }, { 2 , 1 }, { 2 , 3 }, { 2 , 4 }, { 3 , 0 }, { 3 , 2 }, { 3 , 4 }, { 4 , 2 }, { 4 , 3 }, }; graph graph = new graph(); graph.buildgraph(vexs, edges); graph.printgraph(); findallpath findallpath = new findallpath(); findallpath.visit(graph, 4 , 0 ); } } |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Coder_py/article/details/72542898