脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python+OpenCV实现图像融合的原理及代码

Python+OpenCV实现图像融合的原理及代码

2021-04-24 00:49~沐春风~ Python

这篇文章主要介绍了Python+OpenCV实现图像融合的原理及代码,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

根据导师作业安排,在学习数字图像处理(刚萨雷斯版)第六章 彩色图像处理 中的彩色模型后,导师安排了一个比较有趣的作业:

Python+OpenCV实现图像融合的原理及代码

融合原理为:

1 注意:遥感原rgb图image和灰度图grayimage为测试用的输入图像;

2 步骤:(1)将rgb转换为hsv空间(h:色调,s:饱和度,v:明度);

(2)用gray图像诶换掉hsv中的v;

(3)替换后的hsv转换回rgb空间即可得到结果。

书上只介绍了hsi彩色模型,并没有说到hsv,所以需要网上查找资料。

python代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cv2
import numpy as np
import math
from matplotlib import pyplot as plt
def caijian(img):#裁剪图像与否根据选择图像大小而定,调用了opencv函数
weight=img.shape[0]
height=img.shape[1]
print(“图像大小为:%d*%d”%(weight,height))
img=cv2.resize(img,(int(weight/2),int(height/2)),interpolation=cv2.inter_cubic)
return(img)
def graytograyimg(img):
grayimg=img1
weight=img.shape[0]
height=img.shape[1]
for i in range(weight):
for j in range(height):
grayimg[i,j]=0.299img[i,j,0]+0.587img[i,j,1]+0.114img[i,j,2]
return(grayimg)
def rgbtohsv(img):
b,g,r=cv2.split(img)
rows,cols=b.shape
h=np.ones([rows,cols],“float”)
s=np.ones([rows,cols],“float”)
v=np.ones([rows,cols],“float”)
print(“rgb图像大小:%d*%d”%(rows,cols))
for i in range(0, rows):
for j in range(0, cols):
max=max((b[i,j],g[i,j],r[i,j]))
min=min((b[i,j],g[i,j],r[i,j]))
v[i,j]=max
if v[i,j]0:
s[i,j]=0
else:
s[i,j]=(v[i,j]-min)/v[i,j]
if maxmin:
h[i,j]=0 # 如果rgb三向量相同,色调为黑
elif v[i,j]==r[i,j]:
h[i,j]=(60*(float(g[i,j])-b[i,j])/(v[i,j]-min))
elif v[i,j]==g[i,j]:
h[i,j]=60*(float(b[i,j])-r[i,j])/(v[i,j]-min)+120
elif v[i,j]==b[i,j]:
h[i,j]=60*(float(r[i,j])-g[i,j])/(v[i,j]-min)+240
if h[i,j]<0:
h[i,j]=h[i,j]+360
h[i,j]=h[i,j]/2
s[i,j]=255*s[i,j]
result=cv2.merge((h,s,v)) # cv2.merge函数是合并单通道成多通道
result=np.uint8(result)
return(result)
def graytohsgry(grayimg,hsvimg):
h,s,v=cv2.split(hsvimg)
rows,cols=v.shape
for i in range(rows):
for j in range(cols):
v[i,j]=grayimg[i][j][0]
newimg=cv2.merge([h,s,v])
newimg=np.uint8(newimg)
return newimg
def hsvtorgb(img,rgb):
h1,s1,v1=cv2.split(img)
rg = rgb.copy()
rows,cols=h1.shape
r,g,b=0.0,0.0,0.0
b1,g1,r1 = cv2.split(rg)
print(“hsv图像大小为:%d*%d”%(rows,cols))
for i in range(rows):
for j in range(cols):
h=h1[i][j]
v=v1[i][j]/255
s=s1[i][j]/255
h=h2
hx=int(h/60.0)
hi=hx%6
f=hx-hi
p=v(1-s)
q=v*(1-fs)
t=v(1-(1-f)s)
if hi0:
r,g,b=v,t,p
elif hi1:
r,g,b=q,v,p
elif hi2:
r,g,b=p,v,t
elif hi3:
r,g,b=p,q,v
elif hi4:
r,g,b=t,p,v
elif hi5:
r,g,b=v,p,q
r,g,b=(r255),(g255),(b255)
r1[i][j]=int®
g1[i][j]=int(g)
b1[i][j]=int(b)
rg=cv2.merge([b1,g1,r1])
return rg
img=cv2.imread(“d:/rgb.bmp”)
gray=cv2.imread(“d:/gray.bmp”)
img=caijian(img)
gray=caijian(gray)
grayimg=graytograyimg(gray)
hsvimg=rgbtohsv(img)
hsgray=graytohsgry(grayimg,hsvimg)
rgbimg=hsvtorgb(hsgray,img)
cv2.imshow(“image”,img)
cv2.imshow(“grayimage”,grayimg)
cv2.imshow(“hsvimage”,hsvimg)
cv2.imshow(“hsgrayimage”,hsgray)
cv2.imshow(“rgbimage”,rgbimg)
cv2.waitkey(0)
cv2.destroyallwindows()

以上代码是在尽量不调用opencv函数的情况下编写,其目的是熟悉图像处理原理和python编程,注释很少,其中rgb转hsv原理,hsv转rgb原理,在csdn中都能找到,灰度图替换hsv中的v原理其实很简单,看代码就能明白,不用再找资料。

总结

以上所述是小编给大家介绍的python+opencv实现图像融合的原理及代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!

原文链接:https://blog.csdn.net/Skymelu/article/details/84767689

延伸 · 阅读

精彩推荐