服务器之家:专注于服务器技术及软件下载分享
分类导航

Mysql|Sql Server|Oracle|Redis|MongoDB|PostgreSQL|Sqlite|DB2|mariadb|Access|数据库技术|

服务器之家 - 数据库 - PostgreSQL - 在PostgreSQL中使用ltree处理层次结构数据的方法

在PostgreSQL中使用ltree处理层次结构数据的方法

2021-04-20 21:57PostgreSQLChina PostgreSQL

这篇文章主要介绍了在PostgreSQL中使用ltree处理层次结构数据,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

在本文中,我们将学习如何使用PostgreSQLltree模块,该模块允许以分层的树状结构存储数据。

 

什么是ltree?

Ltree是PostgreSQL模块。它实现了一种数据类型ltree,用于表示存储在分层树状结构中的数据的标签。提供了用于搜索标签树的广泛工具。

 

为什么选择ltree?

  • ltree实现了一个物化路径,对于INSERT / UPDATE / DELETE来说非常快,而对于SELECT操作则较快
  • 通常,它比使用经常需要重新计算分支的递归CTE或递归函数要快
  • 如内置的查询语法和专门用于查询和导航树的运算符
  • 索引!!!

 

初始数据

首先,您应该在数据库中启用扩展。您可以通过以下命令执行此操作:

?
1
CREATE EXTENSION ltree;

让我们创建表并向其中添加一些数据:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
CREATE TABLE comments (user_id integer, description text, path ltree);
INSERT INTO comments (user_id, description, path) VALUES ( 1, md5(random()::text), '0001');
INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0001.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0001.0001.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 1, md5(random()::text), '0001.0001.0001.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 5, md5(random()::text), '0001.0001.0001.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0002.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 8, md5(random()::text), '0001.0003.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 11, md5(random()::text), '0001.0003.0002.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0003.0002.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 5, md5(random()::text), '0001.0003.0002.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 7, md5(random()::text), '0001.0003.0002.0002.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 20, md5(random()::text), '0001.0003.0002.0002.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 31, md5(random()::text), '0001.0003.0002.0002.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 22, md5(random()::text), '0001.0003.0002.0002.0004');
INSERT INTO comments (user_id, description, path) VALUES ( 34, md5(random()::text), '0001.0003.0002.0002.0005');
INSERT INTO comments (user_id, description, path) VALUES ( 22, md5(random()::text), '0001.0003.0002.0002.0006');

另外,我们应该添加一些索引:

?
1
2
CREATE INDEX path_gist_comments_idx ON comments USING GIST(path);
CREATE INDEX path_comments_idx ON comments USING btree(path);

正如您看到的那样,我建立comments表时带有path字段,该字段包含该表的tree全部路径。如您所见,对于树分隔符,我使用4个数字和点。

让我们在commenets表中找到path以‘0001.0003'的记录:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$ SELECT user_id, path FROM comments WHERE path <@ '0001.0003';
 user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  5 | 0001.0003.0002.0003
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
(12 rows)

让我们通过EXPLAIN命令检查这个SQL:

?
1
2
3
4
5
6
7
8
$ EXPLAIN ANALYZE SELECT user_id, path FROM comments WHERE path <@ '0001.0003';
            QUERY PLAN
----------------------------------------------------------------------------------------------------
 Seq Scan on comments (cost=0.00..1.24 rows=2 width=38) (actual time=0.013..0.017 rows=12 loops=1)
 Filter: (path <@ '0001.0003'::ltree)
 Rows Removed by Filter: 7
 Total runtime: 0.038 ms
(4 rows)

让我们禁用seq scan进行测试:

?
1
2
3
4
5
6
7
8
9
$ SET enable_seqscan=false;
SET
$ EXPLAIN ANALYZE SELECT user_id, path FROM comments WHERE path <@ '0001.0003';
               QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
 Index Scan using path_gist_comments_idx on comments (cost=0.00..8.29 rows=2 width=38) (actual time=0.023..0.034 rows=12 loops=1)
 Index Cond: (path <@ '0001.0003'::ltree)
 Total runtime: 0.076 ms
(3 rows)

现在SQL慢了,但是能看到SQL是怎么使用index的。
第一个SQL语句使用了sequence scan,因为在表中没有太多的数据。

我们可以将select “path <@ ‘0001.0003'” 换种实现方法:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*';
user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  5 | 0001.0003.0002.0003
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
(12 rows)

你不应该忘记数据的顺序,如下的例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0001');
$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0002');
$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0003');
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*';
user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  5 | 0001.0003.0002.0003
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
(15 rows)

现在进行排序:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*' ORDER by path;
 user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  5 | 0001.0003.0002.0003
(15 rows)

可以在lquery的非星号标签的末尾添加几个修饰符,以使其比完全匹配更匹配:
“ @”-不区分大小写匹配,例如a @匹配A
“ *”-匹配任何带有该前缀的标签,例如foo *匹配foobar
“%”-匹配以下划线开头的单词

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
$ SELECT user_id, path FROM comments WHERE path ~ '0001.*{1,2}.0001|0002.*' ORDER by path;
 user_id |   path
---------+--------------------------
  2 | 0001.0001.0001
  2 | 0001.0001.0001.0001
  1 | 0001.0001.0001.0002
  5 | 0001.0001.0001.0003
  6 | 0001.0002.0001
  8 | 0001.0003.0001
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  5 | 0001.0003.0002.0003
(19 rows)

我们来为parent ‘0001.0003'找到所有直接的childrens,见下:

?
1
2
3
4
5
6
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*{1}' ORDER by path;
 user_id |  path
---------+----------------
  8 | 0001.0003.0001
  9 | 0001.0003.0002
(2 rows)

为parent ‘0001.0003'找到所有的childrens,见下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*' ORDER by path;
 user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  5 | 0001.0003.0002.0003
(15 rows)

为children ‘0001.0003.0002.0002.0005'找到parent:

?
1
2
3
4
5
$ SELECT user_id, path FROM comments WHERE path = subpath('0001.0003.0002.0002.0005', 0, -1) ORDER by path;
 user_id |  path
---------+---------------------
  2 | 0001.0003.0002.0002
(1 row)

如果你的路径不是唯一的,你会得到多条记录。

 

概述

可以看出,使用ltree的物化路径非常简单。在本文中,我没有列出ltree的所有可能用法。它不被视为全文搜索问题ltxtquery。但是您可以在PostgreSQL官方文档(http://www.postgresql.org/docs/current/static/ltree.html)中找到它。

了解更多PostgreSQL热点资讯、新闻动态、精彩活动,请访问中国PostgreSQL官方网站:www.postgresqlchina.com

解决更多PostgreSQL相关知识、技术、工作问题,请访问中国PostgreSQL官方问答社区:www.pgfans.cn

下载更多PostgreSQL相关资料、工具、插件问题,请访问中国PostgreSQL官方下载网站:www.postgreshub.cn

解决更多PostgreSQL相关知识、技术、工作问题,请访问PostgreSQL教程网:www.zzvips.com/db/postgresql/

到此这篇关于在PostgreSQL中使用ltree处理层次结构数据的文章就介绍到这了,更多相关PostgreSQL层次结构数据内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://blog.csdn.net/weixin_46199817/article/details/114819040

延伸 · 阅读

精彩推荐
  • PostgreSQLpostgresql 中的to_char()常用操作

    postgresql 中的to_char()常用操作

    这篇文章主要介绍了postgresql 中的to_char()常用操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    J符离13432021-04-12
  • PostgreSQLPostgresql查询效率计算初探

    Postgresql查询效率计算初探

    这篇文章主要给大家介绍了关于Postgresql查询效率计算的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Postgresql具有一定的参考学习价...

    轨迹4622020-05-03
  • PostgreSQL分布式 PostgreSQL之Citus 架构

    分布式 PostgreSQL之Citus 架构

    节点 Citus 是一种 PostgreSQL 扩展,它允许数据库服务器(称为节点)在“无共享(shared nothing)”架构中相互协调。这些节点形成一个集群,允许 PostgreSQL 保存比单...

    未知802023-05-07
  • PostgreSQLPostgresql开启远程访问的步骤全纪录

    Postgresql开启远程访问的步骤全纪录

    postgre一般默认为本地连接,不支持远程访问,所以如果要开启远程访问,需要更改安装文件的配置。下面这篇文章主要给大家介绍了关于Postgresql开启远程...

    我勒个去6812020-04-30
  • PostgreSQL深入理解PostgreSQL的MVCC并发处理方式

    深入理解PostgreSQL的MVCC并发处理方式

    这篇文章主要介绍了深入理解PostgreSQL的MVCC并发处理方式,文中同时介绍了MVCC的缺点,需要的朋友可以参考下 ...

    PostgreSQL教程网3622020-04-25
  • PostgreSQLRDS PostgreSQL一键大版本升级技术解密

    RDS PostgreSQL一键大版本升级技术解密

    一、PostgreSQL行业位置 (一)行业位置 在讨论PostgreSQL(下面简称为PG)在整个数据库行业的位置之前,我们先看一下阿里云数据库在全球的数据库行业里的...

    未知1192023-05-07
  • PostgreSQLpostgresql 数据库中的数据转换

    postgresql 数据库中的数据转换

    postgres8.3以后,字段数据之间的默认转换取消了。如果需要进行数据变换的话,在postgresql数据库中,我们可以用"::"来进行字段数据的类型转换。...

    postgresql教程网12482021-10-08
  • PostgreSQLPostgreSQL标准建表语句分享

    PostgreSQL标准建表语句分享

    这篇文章主要介绍了PostgreSQL标准建表语句分享,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    码上得天下7962021-02-27