服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|JAVA教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|JavaScript|易语言|

服务器之家 - 编程语言 - JAVA教程 - Java实现的n阶曲线拟合功能示例

Java实现的n阶曲线拟合功能示例

2021-03-23 13:59竖琴手 JAVA教程

这篇文章主要介绍了Java实现的n阶曲线拟合功能,结合实例形式分析了Java基于矩阵的多项式曲线拟合相关操作技巧,需要的朋友可以参考下

本文实例讲述了Java实现的n阶曲线拟合功能。分享给大家供大家参考,具体如下:

前面一篇文章Java实现求解一元n次多项式的方法,能解多项式以后,还需要利用那个类,根据若干采样点数据来对未来数据进行预测,拟合的矩阵在上一篇文章中已经贴出来了,这里就不说了,本篇主要是如何根据采样点来计算系数矩阵,并计算预测点的值。

原理很简单,公式在上一篇文章中也有了,此处直接贴代码。

其中用到了上一篇文章中写的类commonAlgorithm.PolynomiaSoluter

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
package commonAlgorithm;
import commonAlgorithm.PolynomialSoluter;
import java.lang.Math;
public class LeastSquare {
  private double[][] matrixA;
  private double[] arrayB;
  private double[] factors;
  private int order;
  public LeastSquare() {
  }
  /*
   * 实例化后,计算前,先要输入参数并生成公式 arrayX为采样点的x轴坐标,按照采样顺序排列
   * arrayY为采样点的y轴坐标,按照采样顺序与x一一对应排列 order
   * 为进行拟合的阶数。用低阶来拟合高阶曲线时可能会不准确,但阶数过高会导致计算缓慢
   */
  public boolean generateFormula(double[] arrayX, double[] arrayY, int order) {
    if (arrayX.length != arrayY.length)
      return false;
    this.order = order;
    int len = arrayX.length;
    // 拟合运算中的x矩阵和y矩阵
    matrixA = new double[order + 1][order + 1];
    arrayB = new double[order + 1];
    // 生成y矩阵以及x矩阵中幂<=order的部分
    for (int i = 0; i < order + 1; i++) {
      double sumX = 0;
      for (int j = 0; j < len; j++) {
        double tmp = Math.pow(arrayX[j], i);
        sumX += tmp;
        arrayB[i] += tmp * arrayY[j];
      }
      for (int j = 0; j <= i; j++)
        matrixA[j][i - j] = sumX;
    }
    // 生成x矩阵中幂>order的部分
    for (int i = order + 1; i <= order * 2; i++) {
      double sumX = 0;
      for (int j = 0; j < len; j++)
        sumX += Math.pow(arrayX[j], i);
      for (int j = i - order; j < order + 1; j++) {
        matrixA[i - j][j] = sumX;
      }
    }
    // 实例化PolynomiaSoluter并解方程组,得到各阶的系数序列factors
    PolynomialSoluter soluter = new PolynomialSoluter();
    factors = soluter.getResult(matrixA, arrayB);
    if (factors == null)
      return false;
    else
      return true;
  }
  // 根据输入坐标,以及系数序列factors计算指定坐标的结果
  public double calculate(double x) {
    double result = factors[0];
    for (int i = 1; i <= order; i++)
      result += factors[i] * Math.pow(x, i);
    return result;
  }
}

希望本文所述对大家java程序设计有所帮助。

原文链接:http://blog.csdn.net/strangerzz/article/details/45250063

延伸 · 阅读

精彩推荐