服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++实现寻找最低公共父节点的方法

C++实现寻找最低公共父节点的方法

2021-02-03 12:10C++教程网 C/C++

这篇文章主要介绍了C++实现寻找最低公共父节点的方法,是数据结构中二叉树的一个经典算法,有一定的借鉴价值,需要的朋友可以参考下

本文实例讲述了C++实现寻找最低公共父节点的方法,是数据结构中二叉树的经典算法。分享给大家供大家参考。具体方法如下:

最低公共父节点,意思很好理解。

思路1:最低公共父节点满足这样的条件:两个节点分别位于其左子树和右子树,那么定义两个bool变量,leftFlag和rightFlag,如果在左子树中,leftFlag为true,如果在右子树中,rightFlag为true,仅当leftFlag == rightFlag == true时,才能满足条件。

实现代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include <iostream>
 
using namespace std;
 
struct Node
{
 Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i), left(pLeft),
 right(pRight) {}
 Node *left;
 Node *right;
 int data;
};
 
Node *constructNode(Node **pNode1, Node **pNode2)
{
 Node *node12 = new Node(12);
 Node *node11 = new Node(11);
 Node *node10 = new Node(10);
 Node *node9 = new Node(9, NULL, node12);
 Node *node8 = new Node(8, node11, NULL);
 Node *node7 = new Node(7);
 Node *node6 = new Node(6);
 Node *node5 = new Node(5, node8, node9);
 Node *node4 = new Node(4, node10);
 Node *node3 = new Node(3, node6, node7);
 Node *node2 = new Node(2, node4, node5);
 Node *node1 = new Node(1, node2, node3);
 
 *pNode1 = node6;
 *pNode2 = node12;
 
 return node1;
}
 
bool isNodeIn(Node *root, Node *node1, Node *node2)
{
 if (node1 == NULL || node2 == NULL)
 {
 throw("invalid node1 and node2");
 return false;
 }
 if (root == NULL)
 return false;
 
 if (root == node1 || root == node2)
 {
 return true;
 }
 else
 {
 return isNodeIn(root->left, node1, node2) || isNodeIn(root->right, node1, node2);
 }
}
 
Node *lowestFarther(Node *root, Node *node1, Node *node2)
{
 if (root == NULL || node1 == NULL || node2 == NULL || node1 == node2)
 {
 return NULL;
 }
 
 bool leftFlag = false;
 bool rightFlag = false;
 leftFlag = isNodeIn(root->left, node1, node2);
 rightFlag = isNodeIn(root->right, node1, node2);
 
 if (leftFlag == true && rightFlag == true)
 {
 return root;
 }
 else if (leftFlag == true)
 {
 return lowestFarther(root->left, node1, node2);
 }
 else
 {
 return lowestFarther(root->right, node1, node2);
 }
}
 
void main()
{
 Node *node1 = NULL;
 Node *node2 = NULL;
 Node *root = constructNode(&node1, &node2);
 
 cout << "node1: " << node1->data << endl;
 cout << "node2: " << node2->data << endl;
 cout << "root: " << root->data << endl;
 
 Node *father = lowestFarther(root, node1, node2);
 
 if (father == NULL)
 {
 cout << "no common father" << endl;
 }
 else
 {
 cout << "father: " << father->data << endl;
 }
}

这类问题在面试的时候常会遇到,对此需要考虑以下情形:

1. node1和node2指向同一节点,这个如何处理
2. node1或node2有不为叶子节点的可能性吗
3. node1或node2一定在树中吗

还要考虑一个效率问题,上述代码中用了两个递归函数,而且存在不必要的递归过程,仔细思考,其实一个递归过程足以解决此问题

实现代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <iostream>
 
using namespace std;
 
struct Node
{
 Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i),
 left(pLeft), right(pRight) {}
 int data;
 Node *left;
 Node *right;
};
 
Node *constructNode(Node **pNode1, Node **pNode2)
{
 Node *node12 = new Node(12);
 Node *node11 = new Node(11);
 Node *node10 = new Node(10);
 Node *node9 = new Node(9, NULL, node12);
 Node *node8 = new Node(8, node11, NULL);
 Node *node7 = new Node(7);
 Node *node6 = new Node(6);
 Node *node5 = new Node(5, node8, node9);
 Node *node4 = new Node(4, node10);
 Node *node3 = new Node(3, node6, node7);
 Node *node2 = new Node(2, node4, node5);
 Node *node1 = new Node(1, node2, node3);
 
 *pNode1 = node6;
 *pNode2 = node5;
 
 return node1;
}
 
bool lowestFather(Node *root, Node *node1, Node *node2, Node *&dest)
{
 if (root == NULL || node1 == NULL || node2 == NULL || node1 == node2)
 return false;
 if (root == node1 || root == node2)
 return true;
 
 bool leftFlag = lowestFather(root->left, node1, node2, dest);
 bool rightFlag = lowestFather(root->right, node1, node2, dest);
 
 if (leftFlag == true && rightFlag == true)
 {
 dest = root;
 }
 if (leftFlag == true || rightFlag == true)
 return true;
}
 
int main()
{
 Node *node1 = NULL;
 Node *node2 = NULL;
 Node *root = constructNode(&node1, &node2);
 
 bool flag1 = false;
 bool flag2 = false;
 Node *dest = NULL;
 bool flag = lowestFather(root, node1, node2, dest);
 
 if (dest != NULL)
 {
 cout << "lowest common father: " << dest->data << endl;
 }
 else
 {
 cout << "no common father!" << endl;
 }
 
 return 0;
}

下面再换一种方式的写法如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <iostream>
 
using namespace std;
 
struct Node
{
 Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i),
 left(pLeft), right(pRight) {}
 int data;
 Node *left;
 Node *right;
};
 
Node *constructNode(Node **pNode1, Node **pNode2)
{
 Node *node12 = new Node(12);
 Node *node11 = new Node(11);
 Node *node10 = new Node(10);
 Node *node9 = new Node(9, NULL, node12);
 Node *node8 = new Node(8, node11, NULL);
 Node *node7 = new Node(7);
 Node *node6 = new Node(6);
 Node *node5 = new Node(5, node8, node9);
 Node *node4 = new Node(4, node10);
 Node *node3 = new Node(3, node6, node7);
 Node *node2 = new Node(2, node4, node5);
 Node *node1 = new Node(1, node2, node3);
 
 *pNode1 = node11;
 *pNode2 = node12;
 
 return node1;
}
 
Node* lowestFather(Node *root, Node *node1, Node *node2)
{
 if (root == NULL || node1 == NULL || node2 == NULL || node1 == node2)
 return NULL;
 if (root == node1 || root == node2)
 return root;
 
 Node* leftFlag = lowestFather(root->left, node1, node2);
 Node* rightFlag = lowestFather(root->right, node1, node2);
 
 if (leftFlag == NULL)
 return rightFlag;
 else if (rightFlag == NULL)
 return leftFlag;
 else
 return root;
}
 
int main()
{
 Node *node1 = NULL;
 Node *node2 = NULL;
 Node *root = constructNode(&node1, &node2);
 
 bool flag1 = false;
 bool flag2 = false;
 Node *dest = NULL;
 Node* flag = lowestFather(root, node1, node2);
 
 if (flag != NULL)
 {
 cout << "lowest common father: " << flag->data << endl;
 }
 else
 {
 cout << "no common father!" << endl;
 }
 
 return 0;
}

希望本文所述对大家C++程序算法设计的学习有所帮助。

  • C++
  • 延伸 · 阅读

    精彩推荐