服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++线性时间的排序算法分析

C++线性时间的排序算法分析

2021-01-27 12:16C++教程网 C/C++

这篇文章主要介绍了C++线性时间的排序算法分析,是非常经典的非比较排序算法,对于C++程序员有很大的借鉴价值,需要的朋友可以参考下

前面的文章已经介绍了几种排序算法,如插入排序(直接插入排序,折半插入排序,希尔排序)、交换排序(冒泡排序,快速排序)、选择排序(简单选择排序,堆排序)、2-路归并排序(可以参考前一篇文章:各种内部排序算法的实现)等,这些排序算法都有一个共同的特点,就是基于比较。

本文将介绍三种非比较的排序算法:计数排序,基数排序,桶排序。它们将突破比较排序的Ω(nlgn)下界,以线性时间运行。

一、比较排序算法的时间下界

所谓的比较排序是指通过比较来决定元素间的相对次序。

“定理:对于含n个元素的一个输入序列,任何比较排序算法在最坏情况下,都需要做Ω(nlgn)次比较。”
也就是说,比较排序算法的运行速度不会快于nlgn,这就是基于比较的排序算法的时间下界。

通过决策树(Decision-Tree)可以证明这个定理,关于决策树的定义以及证明过程在这里就不赘述了。读者可以自己去查找资料,这里推荐大家看一看麻省理工学院公开课:算法导论的《MIT公开课:线性时间排序》

根据上面的定理,我们知道任何比较排序算法的运行时间不会快于nlgn。那么我们是否可以突破这个限制呢?当然可以,接下来我们将介绍三种线性时间的排序算法,它们都不是通过比较来排序的,因此,下界Ω(nlgn)对它们不适用。

二、计数排序(Counting Sort)

计数排序的基本思想就是对每一个输入元素x,确定小于x的元素的个数,这样就可以把x直接放在它在最终输出数组的位置上,例如:

C++线性时间的排序算法分析

算法的步骤大致如下:

①.找出待排序的数组中最大和最小的元素

②.统计数组中每个值为i的元素出现的次数,存入数组C的第i项

③.对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)

④.反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

C++代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*************************************************************************
  > File Name: CountingSort.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
using namespace std;
 
/*
 *计数排序:A和B为待排和目标数组,k为数组中最大值,len为数组长度
 */
void CountingSort(int A[], int B[], int k, int len)
{
  int C[k+1];
  for(int i=0; i<k+1; ++i)
    C[i] = 0;
  for(int i=0; i<len; ++i)
    C[A[i]] += 1;
  for(int i=1; i<k+1; ++i)
    C[i] = C[i] + C[i-1];
  for(int i=len-1; i>=0; --i)
  {
    B[C[A[i]]-1] = A[i];
    C[A[i]] -= 1;
  }
}
 
/* 输出数组 */
void print(int arr[], int len)
{
  for(int i=0; i<len; ++i)
    cout << arr[i] << " ";
  cout << endl;
}
 
/* 测试 */
int main()
{
  int origin[8] = {4,5,3,0,2,1,15,6};
  int result[8];
  print(origin, 8);
  CountingSort(origin, result, 15, 8);
  print(result, 8);
  return 0;
}

当输入的元素是0到k之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k)。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。计数排序是一个稳定的排序算法。

可能你会发现,计数排序似乎饶了点弯子,比如当我们刚刚统计出C,C[i]可以表示A中值为i的元素的个数,此时我们直接顺序地扫描C,就可以求出排序后的结果。的确是这样,不过这种方法不再是计数排序,而是桶排序,确切地说,是桶排序的一种特殊情况。

三、桶排序(Bucket Sort)

桶排序(Bucket Sort)的思想是将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法)。当要被排序的数组内的数值是均匀分配的时候,桶排序可以以线性时间运行。桶排序过程动画演示:Bucket Sort,桶排序原理图如下:

C++线性时间的排序算法分析

C++代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/*************************************************************************
  > File Name: BucketSort.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
using namespace std;
 
/* 节点 */
struct node
{
  int value;
  node* next;
};
 
/* 桶排序 */
void BucketSort(int A[], int max, int len)
{
  node bucket[len];
  int count=0;
  for(int i=0; i<len; ++i)
  {
    bucket[i].value = 0;
    bucket[i].next = NULL;
  }
   
  for(int i=0; i<len; ++i)
  {
    node *ist = new node();
    ist->value = A[i];
    ist->next = NULL;
    int idx = A[i]*len/(max+1); // 计算索引
    if(bucket[idx].next == NULL)
    {
      bucket[idx].next = ist;
    }
    else /* 按大小顺序插入链表相应位置 */
    {
      node *p = &bucket[idx];
      node *q = p->next;
      while(q!=NULL && q->value <= A[i])
      {
        p = q;
        q = p->next;
      }
      ist->next = q;
      p->next = ist;
    }
  }
 
  for(int i=0; i<len; ++i)
  {
    node *p = bucket[i].next;
    if(p == NULL)
      continue;
    while(p!= NULL)
    {
      A[count++] = p->value;
      p = p->next;
    }
  }
}
 
/* 输出数组 */
void print(int A[], int len)
{
  for(int i=0; i<len; ++i)
    cout << A[i] << " ";
  cout << endl;
}
 
/* 测试 */
int main()
{
  int row[11] = {24,37,44,12,89,93,77,61,58,3,100};
  print(row, 11);
  BucketSort(row, 235, 11);
  print(row, 11);
  return 0;
}

四、基数排序(Radix Sort)

基数排序(Radix Sort)是一种非比较型排序算法,它将整数按位数切割成不同的数字,然后按每个位分别进行排序。基数排序的方式可以采用MSD(Most significant digital)或LSD(Least significant digital),MSD是从最高有效位开始排序,而LSD是从最低有效位开始排序。

当然我们可以采用MSD方式排序,按最高有效位进行排序,将最高有效位相同的放到一堆,然后再按下一个有效位对每个堆中的数递归地排序,最后再将结果合并起来。但是,这样会产生很多中间堆。所以,通常基数排序采用的是LSD方式。

LSD基数排序实现的基本思路是将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。需要注意的是,对每一个数位进行排序的算法必须是稳定的,否则就会取消前一次排序的结果。通常我们使用计数排序或者桶排序作为基数排序的辅助算法。基数排序过程动画演示:Radix Sort

C++实现(使用计数排序)如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/*************************************************************************
  > File Name: RadixSort.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
using namespace std;
 
// 找出整数num第n位的数字
int findIt(int num, int n)
{
  int power = 1;
  for (int i = 0; i < n; i++)
  {
    power *= 10;
  }
  return (num % power) * 10 / power;
}
 
// 基数排序(使用计数排序作为辅助)
void RadixSort(int A[], int len, int k)
{
  for(int i=1; i<=k; ++i)
  {
    int C[10] = {0};  // 计数数组
    int B[len];    // 结果数组
 
    for(int j=0; j<len; ++j)
    {
      int d = findIt(A[j], i);
      C[d] += 1;
    }
 
    for(int j=1; j<10; ++j)
      C[j] = C[j] + C[j-1];
 
    for(int j=len-1; j>=0; --j)
    {
      int d = findIt(A[j], i);
      C[d] -= 1;
      B[C[d]] = A[j];
    }
     
    // 将B中排好序的拷贝到A中
    for(int j=0; j<len; ++j)
      A[j] = B[j];
  }
}
 
// 输出数组
void print(int A[], int len)
{
  for(int i=0; i<len; ++i)
    cout << A[i] << " ";
  cout << endl;
}
 
// 测试
int main()
{
  int A[8] = {332, 653, 632, 5, 755, 433, 722, 48};
  print(A, 8);
  RadixSort(A, 8, 3);
  print(A, 8);
  return 0;
}

基数排序的时间复杂度是 O(k·n),其中n是排序元素个数,k是数字位数。注意这不是说这个时间复杂度一定优于O(nlgn),因为n可能具有比较大的系数k。

另外,基数排序不仅可以对整数排序,也可以对有多个关键字域的记录进行排序。例如,根据三个关键字年、月、日来对日期进行排序。

延伸 · 阅读

精彩推荐