服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++实现一维向量旋转算法

C++实现一维向量旋转算法

2021-01-27 12:12C++教程网 C/C++

这篇文章主要介绍了C++实现一维向量旋转算法,非常实用的经典算法,需要的朋友可以参考下

在《编程珠玑》一书的第二章提到了n元一维向量旋转算法(又称数组循环移位算法)的五种思路,并且比较了它们在时间和空间性能上的区别和优劣。本文将就这一算法做较为深入的分析。具体如下所示:

一、问题描述

将一个n元一维向量向左旋转i个位置。例如,假设n=8,i=3,向量abcdefgh旋转为向量defghabc。简单的代码使用一个n元的中间向量在n步内可完成该工作。你能否仅使用几十个额外字节的内存空间,在正比于n的时间内完成向量的旋转?

二、解决方案

思路一:将向量x中的前i个元素复制到一个临时数组中,接着将余下的n-i个元素左移i个位置,然后再将前i个元素从临时数组中复制到x中余下的位置。

性能:这种方法使用了i个额外的位置,如果i很大则产生了过大的存储空间的消耗。

C++代码实现如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/*************************************************************************
  > File Name: vector_rotate.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
#include<string>
using namespace std;
 
int main()
{
  string s = "abcdefghijklmn";
  cout << "The origin is: " << s << endl;
  // 左移个数
  int i;
  cin >> i;
  if(i > s.size())
  {
    i = i%s.size();
  }
  // 将前i个元素临时保存
  string tmp(s, 0, i);
  // 将剩余的左移i个位置
  for(int  j=i; j<s.size(); ++j)
  {
    s[j-i] = s[j];
  }
  s = s.substr(0, s.size()-i) + tmp;
  cout << "The result is: "<< s << endl;
  return 0;
}

思路二:定义一个函数将x向左旋转一个位置(其时间正比于n),然后调用该函数i次。

性能:这种方法虽然空间复杂度为O(1),但产生了过多的运行时间消耗。

C++代码实现如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*************************************************************************
  > File Name: vector_rotate_1.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
#include<string>
using namespace std;
 
void rotateOnce(string &s)
{
  char tmp = s[0];
  int i;
  for(i=1; i<s.size(); ++i)
  {
    s[i-1] = s[i];
  }
  s[i-1] = tmp;
}
 
int main()
{
  string s = "abcdefghijklmn";
  cout << "The origin is: " << s << endl;
  // 左移个数
  int i;
  cin >> i;
  if(i > s.size())
  {
    i = i%s.size();
  }
  // 调用函数i次
  while(i--)
  {
    rotateOnce(s);
  }
  cout << "The result is: "<< s << endl;
  return 0;
}

 

思路三:移动x[0]到临时变量t中,然后移动x[i]到x[0]中,x[2i]到x[i],依次类推,直到我们又回到x[0]的位置提取元素,此时改为从临时变量t中提取元素,然后结束该过程(当下标大于n时对n取模或者减去n)。如果该过程没有移动全部的元素,就从x[1]开始再次进行移动,总共移动i和n的最大公约数次。

性能:这种方法非常精巧,像书中所说的一样堪称巧妙的杂技表演。空间复杂度为O(1),时间复杂度为线性时间,满足问题的性能要求,但还不是最佳。

C++代码实现如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/*************************************************************************
  > File Name: vector_rotate_2.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
#include<string>
using namespace std;
 
// 欧几里德(辗转相除)算法求最大公约数
int gcd(int i, int j)
{
  while(1)
  {
    if(i > j)
    {
      i = i%j;
      if(i == 0)
      {
        return j;
      }
    }
    if(j > i)
    {
      j = j%i;
      if(j == 0)
      {
        return i;
      }
    }
  }
}
 
int main()
{
  string s = "abcdefghijklmn";
  cout << "The origin is: "<< s << endl;
  // 左移个数
  int i;
  cin >> i;
  if(i > s.size())
  {
    i = i%s.size();
  }
  // 移动
  char tmp;
  int times = gcd(s.size(), i);
  for(int j=0; j<times; ++j)
  {
    tmp = s[j];
    int pre = j; // 记录上一次的位置
    while(1)
    {
      int t = pre+i;
      if(t >= s.size())
        t = t-s.size();
      if(t == j) // 直到tmp原来的位置j为止
        break;
      s[pre] = s[t];
      pre = t;
    }
    s[pre] = tmp;
  }
  cout << "The result is: "<< s << endl;
  return 0;
}

思路四:旋转向量x实际上就是交换向量ab的两段,得到向量ba,这里a代表x的前i个元素。假设a比b短。将b分割成bl和br,使br的长度和a的长度一样。交换a和br,将ablbr转换成brbla。因为序列a已在它的最终位置了,所以我们可以集中精力交换b的两个部分了。由于这个新问题和原先的问题是一样的,所以我们以递归的方式进行解决。这种方法可以得到优雅的程序,但是需要巧妙的代码,并且要进行一些思考才能看出它的效率足够高。

//实现代码(略) 

思路五:(最佳)将这个问题看做是把数组ab转换成ba,同时假定我们拥有一个函数可以将数组中特定部分的元素逆序。从ab开始,首先对a求逆,得到arb,然后对b求逆,得到arbr。最后整体求逆,得到(arbr)r,也就是ba。

?
1
2
3
reverse(0, i-1)  /*cbadefgh*/
reverse(i, n-1) /*cbahgfed*/
reverse(0, n-1) /*defghabc*/

性能:求逆序的方法在时间和空间上都很高效,而且代码非常简短,很难出错。

C++代码实现如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/*************************************************************************
  > File Name: vector_rotate.cpp
  > Author: SongLee
 ************************************************************************/
#include<iostream>
#include<string>
using namespace std;
 
void reverse(string &s, int begin, int end)
{
  while(begin < end)
  {
    char tmp = s[begin];
    s[begin] = s[end];
    s[end] = tmp;
    ++begin;
    --end;
  }
}
 
int main()
{
  string s = "abcdefghijklmn";
  cout << "The origin is: "<< s << endl;
   
  int i;
  cin >> i;
  if(i > s.size())
  {
    i = i%s.size();
  }
 
  reverse(s, 0, i-1);
  reverse(s, i, s.size()-1);
  reverse(s, 0, s.size()-1);
 
  cout << "The result is: "<< s << endl;
  return 0;
}

三、扩展延伸

如何将向量abc旋转变成cba?

和前面的问题类似,此向量旋转对应着非相邻内存块的交换模型。解法很相似,即利用恒等式:cba = (arbrcr)r

注意:在面试或笔试时,如若出现向量旋转(内存块交换)问题,建议最好使用思路五答题,不仅高效而且简洁

延伸 · 阅读

精彩推荐