服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - Java教程 - Hadoop MultipleOutputs输出到多个文件中的实现方法

Hadoop MultipleOutputs输出到多个文件中的实现方法

2021-01-25 11:25csguo007 Java教程

这篇文章主要介绍了 Hadoop MultipleOutputs输出到多个文件中的实现方法的相关资料,希望通过本文能帮助到大家,需要的朋友可以参考下

 Hadoop MultipleOutputs输出到多个文件中的实现方法

1.输出到多个文件或多个文件夹:

驱动中不需要额外改变,只需要在MapClass或Reduce类中加入如下代码

?
1
2
3
4
5
6
7
private MultipleOutputs<Text,IntWritable> mos;
public void setup(Context context) throws IOException,InterruptedException {
  mos = new MultipleOutputs(context);
}
public void cleanup(Context context) throws IOException,InterruptedException {
  mos.close();
}

  然后就可以用mos.write(Key key,Value value,String baseOutputPath)代替context.write(key, value);

  在MapClass或Reduce中使用,输出时也会有默认的文件part-m-00*或part-r-00*,不过这些文件是无内容的,大小为0. 而且只有part-m-00*会传给Reduce。

注意:multipleOutputs.write(key, value, baseOutputPath)方法的第三个函数表明了该输出所在的目录(相对于用户指定的输出目录)。

如果baseOutputPath不包含文件分隔符“/”,那么输出的文件格式为baseOutputPath-r-nnnnn(name-r-nnnnn);
如果包含文件分隔符“/”,例如baseOutputPath=“029070-99999/1901/part”,那么输出文件则为029070-99999/1901/part-r-nnnnn

2.案例-需求

需求,下面是有些测试数据,要对这些数据按类目输出到output中:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1512,iphone5s,4英寸,指纹识别,A7处理器,64位,M7协处理器,低功耗
 
1512,iphone5,4英寸,A6处理器,IOS7
 
1512,iphone4s,3.5英寸,A5处理器,双核,经典
 
50019780,ipad,9.7英寸,retina屏幕,丰富的应用
 
50019780,yoga,联想,待机18小时,外形独特
 
50019780,nexus 7,华硕&google,7英寸
 
50019780,ipad mini 2,retina显示屏,苹果,7.9英寸
 
1101,macbook air,苹果超薄,OS X mavericks
 
1101,macbook pro,苹果,OS X lion
 
1101,thinkpad yoga,联想,windows 8,超级本

3.Mapper程序:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
package cn.edu.bjut.multioutput;
 
import java.io.IOException;
 
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
 
public class MultiOutPutMapper extends Mapper<LongWritable, Text, IntWritable, Text> {
 
  @Override
  protected void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {
    String line = value.toString().trim();
    if(null != line && 0 != line.length()) {
      String[] arr = line.split(",");
      context.write(new IntWritable(Integer.parseInt(arr[0])), value);
    }
  }
 
}

4.Reducer程序:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
package cn.edu.bjut.multioutput;
 
import java.io.IOException;
 
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
 
public class MultiOutPutReducer extends
    Reducer<IntWritable, Text, NullWritable, Text> {
 
  private MultipleOutputs<NullWritable, Text> multipleOutputs = null;
 
  @Override
  protected void reduce(IntWritable key, Iterable<Text> values, Context context)
      throws IOException, InterruptedException {
    for(Text text : values) {
      multipleOutputs.write("KeySpilt", NullWritable.get(), text, key.toString()+"/");
      multipleOutputs.write("AllPart", NullWritable.get(), text);
    }
  }
 
  @Override
  protected void setup(Context context)
      throws IOException, InterruptedException {
    multipleOutputs = new MultipleOutputs<NullWritable, Text>(context);
  }
 
  @Override
  protected void cleanup(Context context)
      throws IOException, InterruptedException {
    if(null != multipleOutputs) {
      multipleOutputs.close();
      multipleOutputs = null;
    }
  }
 
 
}

5.主程序:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
package cn.edu.bjut.multioutput;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 
public class MainJob {
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = new Job(conf, "aaa");
    job.setJarByClass(MainJob.class);
 
    job.setMapperClass(MultiOutPutMapper.class);
    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(Text.class);
 
    job.setReducerClass(MultiOutPutReducer.class);
    job.setOutputKeyClass(NullWritable.class);
    job.setOutputValueClass(Text.class);
 
    FileInputFormat.addInputPath(job, new Path(args[0]));
 
    MultipleOutputs.addNamedOutput(job, "KeySpilt", TextOutputFormat.class, NullWritable.class, Text.class);
    MultipleOutputs.addNamedOutput(job, "AllPart", TextOutputFormat.class, NullWritable.class, Text.class);
 
    Path outPath = new Path(args[1]);
    FileSystem fs = FileSystem.get(conf);
    if(fs.exists(outPath)) {
      fs.delete(outPath, true);
    }
    FileOutputFormat.setOutputPath(job, outPath);
 
    job.waitForCompletion(true);
  }
}

如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

原文链接:http://blog.csdn.net/zhyooo123/article/details/77866458

延伸 · 阅读

精彩推荐