本文介绍了java 读写Parquet格式的数据,分享给大家,具体如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.util.Random; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.log4j.Logger; import org.apache.parquet.example.data.Group; import org.apache.parquet.example.data.GroupFactory; import org.apache.parquet.example.data.simple.SimpleGroupFactory; import org.apache.parquet.hadoop.ParquetReader; import org.apache.parquet.hadoop.ParquetReader.Builder; import org.apache.parquet.hadoop.ParquetWriter; import org.apache.parquet.hadoop.example.GroupReadSupport; import org.apache.parquet.hadoop.example.GroupWriteSupport; import org.apache.parquet.schema.MessageType; import org.apache.parquet.schema.MessageTypeParser; public class ReadParquet { static Logger logger=Logger.getLogger(ReadParquet. class ); public static void main(String[] args) throws Exception { // parquetWriter("test\\parquet-out2","input.txt"); parquetReaderV2( "test\\parquet-out2" ); } static void parquetReaderV2(String inPath) throws Exception{ GroupReadSupport readSupport = new GroupReadSupport(); Builder<Group> reader= ParquetReader.builder(readSupport, new Path(inPath)); ParquetReader<Group> build=reader.build(); Group line= null ; while ((line=build.read())!= null ){ Group time= line.getGroup( "time" , 0 ); //通过下标和字段名称都可以获取 /*System.out.println(line.getString(0, 0)+"\t"+ line.getString(1, 0)+"\t"+ time.getInteger(0, 0)+"\t"+ time.getString(1, 0)+"\t");*/ System.out.println(line.getString("city", 0)+"\t"+ line.getString("ip", 0)+"\t"+ time.getInteger("ttl", 0)+"\t"+ time.getString("ttl2", 0)+"\t"); //System.out.println(line.toString()); } System.out.println("读取结束"); } //新版本中new ParquetReader()所有构造方法好像都弃用了,用上面的builder去构造对象 static void parquetReader(String inPath) throws Exception{ GroupReadSupport readSupport = new GroupReadSupport(); ParquetReader<Group> reader = new ParquetReader<Group>(new Path(inPath),readSupport); Group line=null; while((line=reader.read())!=null){ System.out.println(line.toString()); } System.out.println("读取结束"); } /** * * @param outPath 输出Parquet格式 * @param inPath 输入普通文本文件 * @throws IOException */ static void parquetWriter(String outPath,String inPath) throws IOException{ MessageType schema = MessageTypeParser.parseMessageType( "message Pair {\n" + " required binary city (UTF8);\n" + " required binary ip (UTF8);\n" + " repeated group time {\n" + " required int32 ttl;\n" + " required binary ttl2;\n" + "}\n" + "}" ); GroupFactory factory = new SimpleGroupFactory(schema); Path path = new Path(outPath); Configuration configuration = new Configuration(); GroupWriteSupport writeSupport = new GroupWriteSupport(); writeSupport.setSchema(schema,configuration); ParquetWriter<Group> writer = new ParquetWriter<Group>(path,configuration,writeSupport); //把本地文件读取进去,用来生成parquet格式文件 BufferedReader br = new BufferedReader( new FileReader( new File(inPath))); String line= "" ; Random r= new Random(); while ((line=br.readLine())!= null ){ String[] strs=line.split( "\\s+" ); if (strs.length== 2 ) { Group group = factory.newGroup() .append( "city" ,strs[ 0 ]) .append( "ip" ,strs[ 1 ]); Group tmpG =group.addGroup( "time" ); tmpG.append( "ttl" , r.nextInt( 9 )+ 1 ); tmpG.append( "ttl2" , r.nextInt( 9 )+ "_a" ); writer.write(group); } } System.out.println( "write end" ); writer.close(); } } |
说下schema(写Parquet格式数据需要schema,读取的话"自动识别"了schema)
1
2
3
4
5
6
7
8
9
10
11
|
/* * 每一个字段有三个属性:重复数、数据类型和字段名,重复数可以是以下三种: * required(出现1次) * repeated(出现0次或多次) * optional(出现0次或1次) * 每一个字段的数据类型可以分成两种: * group(复杂类型) * primitive(基本类型) * 数据类型有 * INT64, INT32, BOOLEAN, BINARY, FLOAT, DOUBLE, INT96, FIXED_LEN_BYTE_ARRAY */ |
这个repeated和required 不光是次数上的区别,序列化后生成的数据类型也不同,比如repeqted修饰 ttl2 打印出来为 WrappedArray([7,7_a]) 而 required修饰 ttl2 打印出来为 [7,7_a] 除了用MessageTypeParser.parseMessageType类生成MessageType 还可以用下面方法
(注意这里有个坑--spark里会有这个问题--ttl2这里 as(OriginalType.UTF8) 和 required binary city (UTF8)作用一样,加上UTF8,在读取的时候可以转为StringType,不加的话会报错 [B cannot be cast to java.lang.String )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
/*MessageType schema = MessageTypeParser.parseMessageType("message Pair {\n" + " required binary city (UTF8);\n" + " required binary ip (UTF8);\n" + "repeated group time {\n"+ "required int32 ttl;\n"+ "required binary ttl2;\n"+ "}\n"+ "}");*/ //import org.apache.parquet.schema.Types; MessageType schema = Types.buildMessage() .required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named( "city" ) .required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named( "ip" ) .repeatedGroup().required(PrimitiveTypeName.INT32).named( "ttl" ) .required(PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named( "ttl2" ) .named( "time" ) .named( "Pair" ); |
解决 [B cannot be cast to java.lang.String 异常:
1.要么生成parquet文件的时候加个UTF8
2.要么读取的时候再提供一个同样的schema类指定该字段类型,比如下面:
maven依赖(我用的1.7)
1
2
3
4
5
|
< dependency > < groupId >org.apache.parquet</ groupId > < artifactId >parquet-hadoop</ artifactId > < version >1.7.0</ version > </ dependency > |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/yanghaolie/p/7156372.html