脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python机器学习之神经网络(三)

python机器学习之神经网络(三)

2020-12-26 00:54Jeffrey_Cui Python

这篇文章主要为大家详细介绍了python机器学习之神经网络第三篇,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

前面两篇文章都是参考书本神经网络的原理,一步步写的代码,这篇博文里主要学习了如何使用neurolab库中的函数来实现神经网络的算法。

首先介绍一下neurolab库的配置:

选择你所需要的版本进行下载,下载完成后解压。

neurolab需要采用python安装第三方软件包的方式进行安装,这里介绍一种安装方式:

(1)进入cmd窗口
(2)进入解压文件所在目录下
(3)输入 setup.py install

这样,在python安装目录的Python27\Lib\site-packages下,就可以看到neurolab的文件夹了,然后就可以使用neurolab库了。
使用neurolab库编写的代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl
input = np.array([[4,11],[7,340],[10,95],[3,29],[7,43],[5,128]])
target=np.array([[1],[0],[1],[0],[1],[0]])
#2层网络,5个输入节点,一个输出节点
net=nl.net.newff([[3,10],[11,400]],[5,1])
err=net.train(input,target,epochs=500, show=1, goal=0.02)
out=net.sim(input)
mymean=np.mean(out)
x_max=np.max(input[:,0])+5
x_min=np.min(input[:,0])-5
y_max=np.max(input[:,1])+5
y_min=np.min(input[:,1])-5
plt.subplot(211)
#误差曲线
plt.plot(range(len(err)),err)
plt.xlabel('Epoch number')
plt.ylabel('err (default SSE)')
plt.subplot(212)
#可视化图
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)
for i in xrange(0,len(input)):
 if out[i]>mymean:
  plt.plot(input[i,0],input[i,1],'ro')
 else:
  plt.plot(input[i,0],input[i,1],'r*')
 
plt.show()

python机器学习之神经网络(三)

python机器学习之神经网络(三)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/cui134/article/details/26841073

延伸 · 阅读

精彩推荐