脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python实现感知器模型、两层神经网络

Python实现感知器模型、两层神经网络

2020-12-26 00:45O天涯海阁O Python

这篇文章主要为大家详细介绍了Python实现感知器模型、两层神经网络,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Python实现感知器模型、两层神经网络,供大家参考,具体内容如下

python 3.4 因为使用了 numpy

这里我们首先实现一个感知器模型来实现下面的对应关系

[[0,0,1], ——- 0
[0,1,1], ——- 1
[1,0,1], ——- 0
[1,1,1]] ——- 1

从上面的数据可以看出:输入是三通道,输出是单通道。

Python实现感知器模型、两层神经网络

这里的激活函数我们使用 sigmoid 函数 f(x)=1/(1+exp(-x))

其导数推导如下所示:

Python实现感知器模型、两层神经网络

L0=W*X;
z=f(L0);
error=y-z;
delta =error * f'(L0) * X;
W=W+delta;

python 代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
 
#sigmoid function
 
def nonlin(x, deriv = False):
  if(deriv==True):
    return x*(1-x)
  return 1/(1+np.exp(-x))
 
 
# input dataset
 
X=np.array([[0,0,1],
      [0,1,1],
      [1,0,1],
      [1,1,1]])
 
# output dataset
 
y=np.array([[0,1,0,1]]).T
 
#seed( ) 用于指定随机数生成时所用算法开始的整数值,
#如果使用相同的seed( )值,则每次生成的随即数都相同,
#如果不设置这个值,则系统根据时间来自己选择这个值,
#此时每次生成的随机数因时间差异而不同。
np.random.seed(1
 
# init weight value with mean 0
 
syn0 = 2*np.random.random((3,1))-1  
 
for iter in range(1000):
  # forward propagation
  L0=X
  L1=nonlin(np.dot(L0,syn0))
 
  # error
  L1_error=y-L1
 
  L1_delta = L1_error*nonlin(L1,True)
 
  # updata weight
  syn0+=np.dot(L0.T,L1_delta)
 
print("Output After Training:")
print(L1)

从输出结果可以看出基本实现了对应关系。

下面再用两层网络来实现上面的任务,这里加了一个隐层,隐层包含4个神经元。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
 
def nonlin(x, deriv = False):
  if(deriv == True):
    return x*(1-x)
  else:
    return 1/(1+np.exp(-x))
 
#input dataset
X = np.array([[0,0,1],
       [0,1,1],
       [1,0,1],
       [1,1,1]])
 
#output dataset
y = np.array([[0,1,1,0]]).T
 
#the first-hidden layer weight value
syn0 = 2*np.random.random((3,4)) - 1
 
#the hidden-output layer weight value
syn1 = 2*np.random.random((4,1)) - 1
 
for j in range(60000):
  l0 = X     
  #the first layer,and the input layer
  l1 = nonlin(np.dot(l0,syn0))
  #the second layer,and the hidden layer
  l2 = nonlin(np.dot(l1,syn1))
  #the third layer,and the output layer
 
 
  l2_error = y-l2   
  #the hidden-output layer error
 
  if(j%10000) == 0:
    print "Error:"+str(np.mean(l2_error))
 
  l2_delta = l2_error*nonlin(l2,deriv = True)
 
  l1_error = l2_delta.dot(syn1.T)  
  #the first-hidden layer error
 
  l1_delta = l1_error*nonlin(l1,deriv = True)
 
  syn1 += l1.T.dot(l2_delta)
  syn0 += l0.T.dot(l1_delta)
 
print "outout after Training:"
print l2

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/zhangjunhit/article/details/53487109

延伸 · 阅读

精彩推荐