本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:
用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!
一、用法
1). 定义一个三层神经网络:
1
2
3
4
|
'''示例一''' nn = NeuralNetworks([ 3 , 4 , 2 ]) # 定义神经网络 nn.fit(X,y) # 拟合 print (nn.predict(X)) #预测 |
说明:
输入层节点数目:3
隐藏层节点数目:4
输出层节点数目:2
2).定义一个五层神经网络:
1
2
3
4
|
'''示例二''' nn = NeuralNetworks([ 3 , 5 , 7 , 4 , 2 ]) # 定义神经网络 nn.fit(X,y) # 拟合 print (nn.predict(X)) #预测 |
说明:
输入层节点数目:3
隐藏层1节点数目:5
隐藏层2节点数目:7
隐藏层3节点数目:4
输出层节点数目:2
二、实现
如下实现方式为本人(@hhh5460)原创。 要点: dtype=object
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
import numpy as np class NeuralNetworks( object ): '''''' def __init__( self , n_layers = None , active_type = None , n_iter = 10000 , error = 0.05 , alpha = 0.5 , lamda = 0.4 ): '''搭建神经网络框架''' # 各层节点数目 (向量) self .n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]' self .size = self .n.size # 层的总数 # 层 (向量) self .z = np.empty( self .size, dtype = object ) # 先占位(置空),dtype=object !如下皆然 self .a = np.empty( self .size, dtype = object ) self .data_a = np.empty( self .size, dtype = object ) # 偏置 (向量) self .b = np.empty( self .size, dtype = object ) self .delta_b = np.empty( self .size, dtype = object ) # 权 (矩阵) self .w = np.empty( self .size, dtype = object ) self .delta_w = np.empty( self .size, dtype = object ) # 填充 for i in range ( self .size): self .a[i] = np.zeros( self .n[i]) # 全零 self .z[i] = np.zeros( self .n[i]) # 全零 self .data_a[i] = np.zeros( self .n[i]) # 全零 if i < self .size - 1 : self .b[i] = np.ones( self .n[i + 1 ]) # 全一 self .delta_b[i] = np.zeros( self .n[i + 1 ]) # 全零 mu, sigma = 0 , 0.1 # 均值、方差 self .w[i] = np.random.normal(mu, sigma, ( self .n[i], self .n[i + 1 ])) # # 正态分布随机化 self .delta_w[i] = np.zeros(( self .n[i], self .n[i + 1 ])) # 全零 |
下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
import numpy as np ''' 参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C ''' class NeuralNetworks( object ): '''''' def __init__( self , n_layers = None , active_type = None , n_iter = 10000 , error = 0.05 , alpha = 0.5 , lamda = 0.4 ): '''搭建神经网络框架''' self .n_iter = n_iter # 迭代次数 self .error = error # 允许最大误差 self .alpha = alpha # 学习速率 self .lamda = lamda # 衰减因子 # 此处故意拼写错误! if n_layers is None : raise '各层的节点数目必须设置!' elif not isinstance (n_layers, list ): raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]' # 节点数目 (向量) self .n = np.array(n_layers) self .size = self .n.size # 层的总数 # 层 (向量) self .a = np.empty( self .size, dtype = object ) # 先占位(置空),dtype=object !如下皆然 self .z = np.empty( self .size, dtype = object ) # 偏置 (向量) self .b = np.empty( self .size, dtype = object ) self .delta_b = np.empty( self .size, dtype = object ) # 权 (矩阵) self .w = np.empty( self .size, dtype = object ) self .delta_w = np.empty( self .size, dtype = object ) # 残差 (向量) self .data_a = np.empty( self .size, dtype = object ) # 填充 for i in range ( self .size): self .a[i] = np.zeros( self .n[i]) # 全零 self .z[i] = np.zeros( self .n[i]) # 全零 self .data_a[i] = np.zeros( self .n[i]) # 全零 if i < self .size - 1 : self .b[i] = np.ones( self .n[i + 1 ]) # 全一 self .delta_b[i] = np.zeros( self .n[i + 1 ]) # 全零 mu, sigma = 0 , 0.1 # 均值、方差 self .w[i] = np.random.normal(mu, sigma, ( self .n[i], self .n[i + 1 ])) # # 正态分布随机化 self .delta_w[i] = np.zeros(( self .n[i], self .n[i + 1 ])) # 全零 # 激活函数 self .active_functions = { 'sigmoid' : self .sigmoid, 'tanh' : self .tanh, 'radb' : self .radb, 'line' : self .line, } # 激活函数的导函数 self .derivative_functions = { 'sigmoid' : self .sigmoid_d, 'tanh' : self .tanh_d, 'radb' : self .radb_d, 'line' : self .line_d, } if active_type is None : self .active_type = [ 'sigmoid' ] * ( self .size - 1 ) # 默认激活函数类型 else : self .active_type = active_type def sigmoid( self , z): if np. max (z) > 600 : z[z.argmax()] = 600 return 1.0 / ( 1.0 + np.exp( - z)) def tanh( self , z): return (np.exp(z) - np.exp( - z)) / (np.exp(z) + np.exp( - z)) def radb( self , z): return np.exp( - z * z) def line( self , z): return z def sigmoid_d( self , z): return z * ( 1.0 - z) def tanh_d( self , z): return 1.0 - z * z def radb_d( self , z): return - 2.0 * z * np.exp( - z * z) def line_d( self , z): return np.ones(z.size) # 全一 def forward( self , x): '''正向传播(在线)''' # 用样本 x 走一遍,刷新所有 z, a self .a[ 0 ] = x for i in range ( self .size - 1 ): self .z[i + 1 ] = np.dot( self .a[i], self .w[i]) + self .b[i] self .a[i + 1 ] = self .active_functions[ self .active_type[i]]( self .z[i + 1 ]) # 加了激活函数 def err( self , X, Y): '''误差''' last = self .size - 1 err = 0.0 for x, y in zip (X, Y): self .forward(x) err + = 0.5 * np. sum (( self .a[last] - y) * * 2 ) err / = X.shape[ 0 ] err + = sum ([np. sum (w) for w in self .w[:last] * * 2 ]) return err def backward( self , y): '''反向传播(在线)''' last = self .size - 1 # 用样本 y 走一遍,刷新所有delta_w, delta_b self .data_a[last] = - (y - self .a[last]) * self .derivative_functions[ self .active_type[last - 1 ]]( self .z[last]) # 加了激活函数的导函数 for i in range (last - 1 , 1 , - 1 ): self .data_a[i] = np.dot( self .w[i], self .data_a[i + 1 ]) * self .derivative_functions[ self .active_type[i - 1 ]]( self .z[i]) # 加了激活函数的导函数 # 计算偏导 p_w = np.outer( self .a[i], self .data_a[i + 1 ]) # 外积!感谢 numpy 的强大! p_b = self .data_a[i + 1 ] # 更新 delta_w, delta_w self .delta_w[i] = self .delta_w[i] + p_w self .delta_b[i] = self .delta_b[i] + p_b def update( self , n_samples): '''更新权重参数''' last = self .size - 1 for i in range (last): self .w[i] - = self .alpha * (( 1 / n_samples) * self .delta_w[i] + self .lamda * self .w[i]) self .b[i] - = self .alpha * (( 1 / n_samples) * self .delta_b[i]) def fit( self , X, Y): '''拟合''' for i in range ( self .n_iter): # 用所有样本,依次 for x, y in zip (X, Y): self .forward(x) # 前向,更新 a, z; self .backward(y) # 后向,更新 delta_w, delta_b # 然后,更新 w, b self .update( len (X)) # 计算误差 err = self .err(X, Y) if err < self .error: break # 整千次显示误差(否则太无聊!) if i % 1000 = = 0 : print ( 'iter: {}, error: {}' . format (i, err)) def predict( self , X): '''预测''' last = self .size - 1 res = [] for x in X: self .forward(x) res.append( self .a[last]) return np.array(res) if __name__ = = '__main__' : nn = NeuralNetworks([ 2 , 3 , 4 , 3 , 1 ], n_iter = 5000 , alpha = 0.4 , lamda = 0.3 , error = 0.06 ) # 定义神经网络 X = np.array([[ 0. , 0. ], # 准备数据 [ 0. , 1. ], [ 1. , 0. ], [ 1. , 1. ]]) y = np.array([ 0 , 1 , 1 , 0 ]) nn.fit(X,y) # 拟合 print (nn.predict(X)) # 预测 |
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://www.cnblogs.com/hhh5460/p/5124132.html