服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - Java教程 - java 单例的五种实现方式及其性能分析

java 单例的五种实现方式及其性能分析

2020-11-27 10:45-SOLO- Java教程

这篇文章主要介绍了java 单例的五种实现方式及其性能分析。的相关资料,需要的朋友可以参考下

java 单例的五种实现方式及其性能分析

序言

在23种设计模式中,单例是最简单的设计模式,但是也是很常用的设计模式。从单例的五种实现方式中我们可以看到程序员对性能的不懈追求。下面我将分析单例的五种实现方式的优缺点,并对其在多线程环境下的性能进行测试。

实现

单例模式适用于资源占用较多的类,保证一个类只有一个实例即单例。通用的做法就是构造器私有化,提供一个全局的访问点,返回类的实例。

uml图:

 

java 单例的五种实现方式及其性能分析

1.饿汉式

代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package com.zgh.gof23.singleton;
/**
 * 饿汉式
 * @author yuelin
 *
 */
public class SingleDemo {
 private static SingleDemo instance = new SingleDemo();
 //私有化构造器
 private SingleDemo() {
 //防止其他通过反射调用构造方法,破解单例
 if (instance != null) {
  throw new RuntimeException();
 }
 }
 
 //对外提供统一的访问点
 public static SingleDemo getInstance() {
 return instance;
 }
}

优点

1.实例的初始化由JVM装载类的时候进行,保证了线程的安全性
2.实现简单方便
3.实例的访问效率高

缺点

1.不能实现懒加载,如果不调用getInstance(),那么这个类就白白的占据内存,资源的利用率不高
注意

1.防止通过反射调用构造方法破解单例模式。
2.防止通过反序列产生新的对象。

2.懒汉式

代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
package com.zgh.gof23.singleton;
 
/**
 * 懒汉式实现单例
 *
 * @author zhuguohui
 *
 */
public class SingleDemo2 {
 // 此处并不初始化实例
 private static SingleDemo2 instance;
 
 private SingleDemo2() {
 if (instance != null) {
  throw new RuntimeException();
 }
 }
 
 /**
 * 当调用此方法的时候才初始化实例, 为了实现线程安全,需要使用同步方法
 *
 * @return
 */
 public static synchronized SingleDemo2 getInstance() {
 if (instance == null) {
  instance = new SingleDemo2();
 }
 return instance;
 }
}

优点

1.只有使用这个类的时候才初始化实例,优化了资源利用率

缺点

1.为了实现线程安全,使用了同步方法获取,增加了访问的开销

注意

1.防止通过反射调用构造方法破解单例模式。
2.防止通过反序列产生新的对象。

3.双重检查

代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
package com.zgh.gof23.singleton;
 
/**
 * 双重检查
 *
 * @author zhuguohui
 *
 */
public class SingleDemo3 {
 private static SingleDemo3 instance;
 
 private SingleDemo3() {
 if (instance != null) {
  throw new RuntimeException();
 }
 }
 
 public static SingleDemo3 getInstance() {
 //第一重检查,提高效率
 if (instance == null) {
  synchronized (SingleDemo3.class) {
  //第二重检查保证线程安全
  if (instance == null) {
   instance = new SingleDemo3();
  }
  }
 }
 return instance;
 }
}

优点

1.实现懒加载
2.通过缩小同步区域和第一次检查提高访问效率

缺点

1.为了实现线程安全,使用了同步方法获取,增加了访问的开销

注意

1.防止通过反射调用构造方法破解单例模式。
2.防止通过反序列产生新的对象。

4.静态内部类

代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * 静态内部类实现单例
 *
 * @author zhuguohui
 *
 */
public class SingleDemo4 {
 private static SingleDemo4 instance;
 
 private static class SingleDemo4Holder {
 private static final SingleDemo4 instance = new SingleDemo4();
 }
 
 private SingleDemo4() {
 if (instance != null) {
  throw new RuntimeException();
 }
 }
 
 /**
 * 调用这个方法的时候,JVM才加载静态内部类,才初始化静态内部类的类变量。由于由JVM初始化,保证了线程安全性,
 * 同时又实现了懒加载
 * @return
 */
 public static SingleDemo4 getInstance() {
 return SingleDemo4Holder.instance;
 }
}

优点

1.即实现了线程安全,又实现了懒加载

缺点

2.实现稍显复杂

5.枚举实现

代码实现:

?
1
2
3
4
5
6
7
8
9
/**
 * 枚举实现单例
 * 枚举由JVM实现其的单例性
 * @author zhuguohui
 *
 */
public enum SingleDemo5 {
 INSTANCE;
}

优点

1.实现简单
2.线程安全
3.天热对反射和反序列化漏洞免疫(由JVM提供)

缺点

2.不能实现懒加载

注意

1.防止通过反射调用构造方法破解单例模式。
2.防止通过反序列产生新的对象。

测试

源码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class APP {
 public static void main(String[] args) {
 
 int threadCount = 100;
 long start = System.currentTimeMillis();
 final CountLock lock = new CountLock(threadCount);
 for (int i = 0; i < threadCount; i++) {
  new Thread(new Runnable() {
 
  @Override
  public void run() {
   for (int j = 0; j < 10000000; j++) {
   //通过更换此处,来测试不同单例实现方式在多线程环境下的性能
   SingleDemo5 demo = SingleDemo5.INSTANCE;
   }
   lock.finish();
  }
  }).start();
 
 }
 //等待所有线程执行完
 lock.waitForWrok();
 long end = System.currentTimeMillis();
 System.out.println("总共耗时" + (end - start));
 }
}

为了统计所以线程执行完需要的时间,我写了一个工具类

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
package com.zgh.gof23.singleton;
 
public class CountLock {
 //线程的总数量
 private int count;
 
 public CountLock(int count) {
 this.count = count;
 }
 
 /**
 * 当一个线程完成任务以后,调用一次这个方法
 */
 public synchronized void finish() {
 count--;
 if (count == 0) {
  notifyAll();
 }
 }
 
 /**
 * 需要等待其他线程执行完的线程,调用此方法。
 */
 public synchronized void waitForWrok() {
 while (count > 0) {
  try {
  wait();
  } catch (InterruptedException e) {
  // TODO Auto-generated catch block
  e.printStackTrace();
  }
 }
 }
}

结果

五种单例实现方式,在100个线程下,每个线程访问1千万次实例的用时.

 

Tables 实现方式 用时(毫秒)
1 饿汉式 13
2 懒汉式 10778
3 双重检查 15
4 静态内部类 14
5 枚举 12

 

(*注意:由于不同电脑之间的性能差异,测试的结果可能不同)

总结

如果需要懒加载就使用静态内部类方式,如果不需要就使用枚举方式。

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持! 

原文链接:http://blog.csdn.net/qq_22706515/article/details/74202814

延伸 · 阅读

精彩推荐