向HDFS上传本地文件
1
|
2
3
4
5
6
7
8
9
|
public static void uploadInputFile(String localFile) throws IOException{ Configuration conf = new Configuration(); String hdfsPath = " hdfs://localhost:9000/ " ; String hdfsInput = " hdfs://localhost:9000/user/hadoop/input " ; FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf); fs.copyFromLocalFile( new Path(localFile), new Path(hdfsInput)); fs.close(); System.out.println( "已经上传文件到input文件夹啦" ); } |
将output文件下载到本地
1
|
2
3
4
5
6
7
8
9
10
|
public static void getOutput(String outputfile) throws IOException{ String remoteFile = " hdfs://localhost:9000/user/hadoop/output/part-r-00000 " ; Path path = new Path(remoteFile); Configuration conf = new Configuration(); String hdfsPath = " hdfs://localhost:9000/ " ; FileSystem fs = FileSystem.get(URI.create(hdfsPath),conf); fs.copyToLocalFile(path, new Path(outputfile)); System.out.println( "已经将输出文件保留到本地文件" ); fs.close(); } |
删除hdfs中的文件
1
|
2
3
4
5
6
7
8
9
10
|
public static void deleteOutput() throws IOException{ Configuration conf = new Configuration(); String hdfsOutput = " hdfs://localhost:9000/user/hadoop/output " ; String hdfsPath = " hdfs://localhost:9000/ " ; Path path = new Path(hdfsOutput); FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf); fs.deleteOnExit(path); fs.close(); System.out.println( "output文件已经删除" ); } |
执行mapReduce程序
创建Mapper类和Reducer类
1
|
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable( 1 ); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException{ String line = value.toString(); line = line.replace( "\\" , "" ); String regex = "性别:</span><span class=\"pt_detail\">(.*?)</span>" ; Pattern pattern = Pattern.compile(regex); Matcher matcher = pattern.matcher(line); while (matcher.find()){ String term = matcher.group( 1 ); word.set(term); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException{ int sum = 0 ; for (IntWritable val :values){ sum+= val.get(); } result.set(sum); context.write(key, result); } } |
执行mapReduce程序
1
|
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
public static void runMapReduce(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2 ){ System.err.println( "Usage: wordcount<in> <out>" ); System.exit( 2 ); } Job job = new Job(conf, "word count" ); job.setJarByClass(WordCount. class ); job.setMapperClass(TokenizerMapper. class ); job.setCombinerClass(IntSumReducer. class ); job.setReducerClass(IntSumReducer. class ); job.setOutputKeyClass(Text. class ); job.setOutputValueClass(IntWritable. class ); FileInputFormat.addInputPath(job, new Path(otherArgs[ 0 ])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[ 1 ])); System.out.println( "mapReduce 执行完毕!" ); System.exit(job.waitForCompletion( true )? 0 : 1 ); } |
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
原文链接:http://blog.csdn.net/qq_30843221/article/details/54429792