原文:https://git.io/pytips
0x01 介绍了迭代器的概念,即定义了 __iter__() 和 __next__() 方法的对象,或者通过 yield 简化定义的“可迭代对象”,而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异)。Python 借鉴了 APL, Haskell, and SML 中的某些迭代器的构造方法,并在 itertools 中实现(该模块是通过 C 实现,源代码:/Modules/itertoolsmodule.c)。
itertools 模块提供了如下三类迭代器构建工具:
无限迭代
整合两序列迭代
组合生成器
1. 无限迭代
所谓无限(infinite)是指如果你通过 for...in... 的语法对其进行迭代,将陷入无限循环,包括:
1
2
3
4
5
|
count(start, [step]) cycle(p) repeat(elem [,n]) |
从名字大概可以猜出它们的用法,既然说是无限迭代,我们自然不会想要将其所有元素依次迭代取出,而通常是结合 map/zip 等方法,将其作为一个取之不尽的数据仓库,与有限长度的可迭代对象进行组合操作:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
from itertools import cycle, count, repeat print (count.__doc__) count(start = 0 , step = 1 ) - - > count object Return a count object whose .__next__() method returns consecutive values. Equivalent to: def count(firstval = 0 , step = 1 ): x = firstval while 1 : yield x x + = step counter = count() print ( next (counter)) print ( next (counter)) print ( list ( map ( lambda x, y: x + y, range ( 10 ), counter))) odd_counter = map ( lambda x: 'Odd#{}' . format (x), count( 1 , 2 )) print ( next (odd_counter)) print ( next (odd_counter)) 0 1 [ 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 ] Odd #1 Odd #3 print (cycle.__doc__) cycle(iterable) - - > cycle object Return elements from the iterable until it is exhausted. Then repeat the sequence indefinitely. cyc = cycle( range ( 5 )) print ( list ( zip ( range ( 6 ), cyc))) print ( next (cyc)) print ( next (cyc)) [( 0 , 0 ), ( 1 , 1 ), ( 2 , 2 ), ( 3 , 3 ), ( 4 , 4 ), ( 5 , 0 )] 1 2 print (repeat.__doc__) repeat( object [,times]) - > create an iterator which returns the object for the specified number of times. If not specified, returns the object endlessly. print ( list (repeat( 'Py' , 3 ))) rep = repeat( 'p' ) print ( list ( zip (rep, 'y' * 3 ))) [ 'Py' , 'Py' , 'Py' ] [( 'p' , 'y' ), ( 'p' , 'y' ), ( 'p' , 'y' )] |
2. 整合两序列迭代
所谓整合两序列,是指以两个有限序列为输入,将其整合操作之后返回为一个迭代器,最为常见的 zip 函数就属于这一类别,只不过 zip 是内置函数。这一类别完整的方法包括:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
accumulate() chain() / chain.from_iterable() compress() dropwhile() / filterfalse() / takewhile() groupby() islice() starmap() tee() zip_longest() |
这里就不对所有的方法一一举例说明了,如果想要知道某个方法的用法,基本通过 print(method.__doc__) 就可以了解,毕竟 itertools 模块只是提供了一种快捷方式,并没有隐含什么深奥的算法。这里只对下面几个我觉得比较有趣的方法进行举例说明。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
from itertools import cycle, compress, islice, takewhile, count # 这三个方法(如果使用恰当)可以限定无限迭代 # print(compress.__doc__) print ( list (compress(cycle( 'PY' ), [ 1 , 0 , 1 , 0 ]))) # 像操作列表 l[start:stop:step] 一样操作其它序列 # print(islice.__doc__) print ( list (islice(cycle( 'PY' ), 0 , 2 ))) # 限制版的 filter # print(takewhile.__doc__) print ( list (takewhile( lambda x: x < 5 , count()))) [ 'P' , 'P' ] [ 'P' , 'Y' ] [ 0 , 1 , 2 , 3 , 4 ] from itertools import groupby from operator import itemgetter print (groupby.__doc__) for k, g in groupby( 'AABBC' ): print (k, list (g)) db = [ dict (name = 'python' , script = True ), dict (name = 'c' , script = False ), dict (name = 'c++' , script = False ), dict (name = 'ruby' , script = True )] keyfunc = itemgetter( 'script' ) db2 = sorted (db, key = keyfunc) # sorted by `script' for isScript, langs in groupby(db2, keyfunc): print ( ', ' .join( map (itemgetter( 'name' ), langs))) groupby(iterable[, keyfunc]) - > create an iterator which returns (key, sub - iterator) grouped by each value of key(value). A [ 'A' , 'A' ] B [ 'B' , 'B' ] C [ 'C' ] c, c + + python, ruby from itertools import zip_longest # 内置函数 zip 以较短序列为基准进行合并, # zip_longest 则以最长序列为基准,并提供补足参数 fillvalue # Python 2.7 中名为 izip_longest print ( list (zip_longest( 'ABCD' , '123' , fillvalue = 0 ))) [( 'A' , '1' ), ( 'B' , '2' ), ( 'C' , '3' ), ( 'D' , 0 )] |
3. 组合生成器
关于生成器的排列组合:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
product( * iterables, repeat = 1 ):两输入序列的笛卡尔乘积 permutations(iterable, r = None ):对输入序列的完全排列组合 combinations(iterable, r):有序版的排列组合 combinations_with_replacement(iterable, r):有序版的笛卡尔乘积 from itertools import product, permutations, combinations, combinations_with_replacement print ( list (product( range ( 2 ), range ( 2 )))) print ( list (product( 'AB' , repeat = 2 ))) [( 0 , 0 ), ( 0 , 1 ), ( 1 , 0 ), ( 1 , 1 )] [( 'A' , 'A' ), ( 'A' , 'B' ), ( 'B' , 'A' ), ( 'B' , 'B' )] print ( list (combinations_with_replacement( 'AB' , 2 ))) [( 'A' , 'A' ), ( 'A' , 'B' ), ( 'B' , 'B' )] # 赛马问题:4匹马前2名的排列组合(A^4_2) print ( list (permutations( 'ABCDE' , 2 ))) [( 'A' , 'B' ), ( 'A' , 'C' ), ( 'A' , 'D' ), ( 'A' , 'E' ), ( 'B' , 'A' ), ( 'B' , 'C' ), ( 'B' , 'D' ), ( 'B' , 'E' ), ( 'C' , 'A' ), ( 'C' , 'B' ), ( 'C' , 'D' ), ( 'C' , 'E' ), ( 'D' , 'A' ), ( 'D' , 'B' ), ( 'D' , 'C' ), ( 'D' , 'E' ), ( 'E' , 'A' ), ( 'E' , 'B' ), ( 'E' , 'C' ), ( 'E' , 'D' )] # 彩球问题:4种颜色的球任意抽出2个的颜色组合(C^4_2) print ( list (combinations( 'ABCD' , 2 ))) [( 'A' , 'B' ), ( 'A' , 'C' ), ( 'A' , 'D' ), ( 'B' , 'C' ), ( 'B' , 'D' ), ( 'C' , 'D' )] |