本文实例讲述了Python聚类算法之DBSACN。分享给大家供大家参考,具体如下:
DBSCAN:是一种简单的,基于密度的聚类算法。本次实现中,DBSCAN使用了基于中心的方法。在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量。根据数据点的密度分为三类点:
核心点:该点在邻域内的密度超过给定的阀值MinPs。
边界点:该点不是核心点,但是其邻域内包含至少一个核心点。
噪音点:不是核心点,也不是边界点。
有了以上对数据点的划分,聚合可以这样进行:各个核心点与其邻域内的所有核心点放在同一个簇中,把边界点跟其邻域内的某个核心点放在同一个簇中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
# scoding=utf-8 import pylab as pl from collections import defaultdict,Counter points = [[ int (eachpoint.split( "#" )[ 0 ]), int (eachpoint.split( "#" )[ 1 ])] for eachpoint in open ( "points" , "r" )] # 计算每个数据点相邻的数据点,邻域定义为以该点为中心以边长为2*EPs的网格 Eps = 10 surroundPoints = defaultdict( list ) for idx1,point1 in enumerate (points): for idx2,point2 in enumerate (points): if (idx1 < idx2): if ( abs (point1[ 0 ] - point2[ 0 ])< = Eps and abs (point1[ 1 ] - point2[ 1 ])< = Eps): surroundPoints[idx1].append(idx2) surroundPoints[idx2].append(idx1) # 定义邻域内相邻的数据点的个数大于4的为核心点 MinPts = 5 corePointIdx = [pointIdx for pointIdx,surPointIdxs in surroundPoints.iteritems() if len (surPointIdxs)> = MinPts] # 邻域内包含某个核心点的非核心点,定义为边界点 borderPointIdx = [] for pointIdx,surPointIdxs in surroundPoints.iteritems(): if (pointIdx not in corePointIdx): for onesurPointIdx in surPointIdxs: if onesurPointIdx in corePointIdx: borderPointIdx.append(pointIdx) break # 噪音点既不是边界点也不是核心点 noisePointIdx = [pointIdx for pointIdx in range ( len (points)) if pointIdx not in corePointIdx and pointIdx not in borderPointIdx] corePoint = [points[pointIdx] for pointIdx in corePointIdx] borderPoint = [points[pointIdx] for pointIdx in borderPointIdx] noisePoint = [points[pointIdx] for pointIdx in noisePointIdx] # pl.plot([eachpoint[0] for eachpoint in corePoint], [eachpoint[1] for eachpoint in corePoint], 'or') # pl.plot([eachpoint[0] for eachpoint in borderPoint], [eachpoint[1] for eachpoint in borderPoint], 'oy') # pl.plot([eachpoint[0] for eachpoint in noisePoint], [eachpoint[1] for eachpoint in noisePoint], 'ok') groups = [idx for idx in range ( len (points))] # 各个核心点与其邻域内的所有核心点放在同一个簇中 for pointidx,surroundIdxs in surroundPoints.iteritems(): for oneSurroundIdx in surroundIdxs: if (pointidx in corePointIdx and oneSurroundIdx in corePointIdx and pointidx < oneSurroundIdx): for idx in range ( len (groups)): if groups[idx] = = groups[oneSurroundIdx]: groups[idx] = groups[pointidx] # 边界点跟其邻域内的某个核心点放在同一个簇中 for pointidx,surroundIdxs in surroundPoints.iteritems(): for oneSurroundIdx in surroundIdxs: if (pointidx in borderPointIdx and oneSurroundIdx in corePointIdx): groups[pointidx] = groups[oneSurroundIdx] break # 取簇规模最大的5个簇 wantGroupNum = 3 finalGroup = Counter(groups).most_common( 3 ) finalGroup = [onecount[ 0 ] for onecount in finalGroup] group1 = [points[idx] for idx in xrange ( len (points)) if groups[idx] = = finalGroup[ 0 ]] group2 = [points[idx] for idx in xrange ( len (points)) if groups[idx] = = finalGroup[ 1 ]] group3 = [points[idx] for idx in xrange ( len (points)) if groups[idx] = = finalGroup[ 2 ]] pl.plot([eachpoint[ 0 ] for eachpoint in group1], [eachpoint[ 1 ] for eachpoint in group1], 'or' ) pl.plot([eachpoint[ 0 ] for eachpoint in group2], [eachpoint[ 1 ] for eachpoint in group2], 'oy' ) pl.plot([eachpoint[ 0 ] for eachpoint in group3], [eachpoint[ 1 ] for eachpoint in group3], 'og' ) # 打印噪音点,黑色 pl.plot([eachpoint[ 0 ] for eachpoint in noisePoint], [eachpoint[ 1 ] for eachpoint in noisePoint], 'ok' ) pl.show() |
运行效果截图如下:
希望本文所述对大家Python程序设计有所帮助。