我就废话不多说了,直接上代码吧!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
import tensorflow as tf def model_1(): with tf.variable_scope( "var_a" ): a = tf.Variable(initial_value = [ 1 , 2 , 3 ], name = "a" ) vars = [var for var in tf.trainable_variables() if var.name.startswith( "var_a" )] print ( len ( vars )) return vars def model_2(): vars1 = model_1() with tf.variable_scope( "var_b" ): a = tf.Variable(initial_value = [ 1 , 2 , 3 ], name = "a" ) vars2 = [var for var in tf.trainable_variables() if var.name.startswith( "var" )] print ( len (vars2)) return vars1 def pretrain_model1(): print ( "-------- model 1 ------" ) vars = model_1() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.save(sess, "./model.ckpt" ) def train_model2(): print ( "-------- model 2 ------" ) model1_vars = model_2() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(var_list = model1_vars) saver.restore(sess, "./model.ckpt" ) vars = sess.run([model1_vars]) for var in vars : print (var) step = 2 if step = = 1 : pretrain_model1() else : train_model2() |
以上这篇tensorflow 只恢复部分模型参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/huwtylv/p/10204295.html