在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件。
1
2
3
|
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def,[ 'net_loss/inference/encode/conv_output/conv_output' ]) with tf.gfile.FastGFile( 'net_model.pb' , mode = 'wb' ) as f: f.write(constant_graph.SerializeToString()) |
tf1.0中通过带weight的pb文件与get_tensor_by_name函数可以获取每一层的输出
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
import os import os.path as ops import argparse import time import math import tensorflow as tf import glob import numpy as np import matplotlib.pyplot as plt import cv2 os.environ[ "CUDA_VISIBLE_DEVICES" ] = "-1" gragh_path = './model.pb' image_path = './lvds1901.JPG' inputtensorname = 'input_tensor:0' tensorname = 'loss/inference/encode/resize_images/ResizeBilinear' filepath = './net_output.txt' HEIGHT = 256 WIDTH = 256 VGG_MEAN = [ 103.939 , 116.779 , 123.68 ] with tf.Graph().as_default(): graph_def = tf.GraphDef() with tf.gfile.GFile(gragh_path, 'rb' ) as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) tf.import_graph_def(graph_def, name = '') image = cv2.imread(image_path) image = cv2.resize(image, (WIDTH, HEIGHT), interpolation = cv2.INTER_CUBIC) image_np = np.array(image) image_np = image_np - VGG_MEAN image_np_expanded = np.expand_dims(image_np, axis = 0 ) with tf.Session() as sess: ops = tf.get_default_graph().get_operations() tensor_name = tensorname + ':0' tensor_dict = tf.get_default_graph().get_tensor_by_name(tensor_name) image_tensor = tf.get_default_graph().get_tensor_by_name(inputtensorname) output = sess.run(tensor_dict, feed_dict = {image_tensor: image_np_expanded}) ftxt = open (filepath, 'w' ) transform = output.transpose( 0 , 3 , 1 , 2 ) transform = transform.flatten() weight_count = 0 for i in transform: if weight_count % 10 = = 0 and weight_count ! = 0 : ftxt.write( '\n' ) ftxt.write( str (i) + ',' ) weight_count + = 1 ftxt.close() |
以上这篇TensorFlow实现打印每一层的输出就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/derteanoo/article/details/90140759