摆线
最简单的旋轮线就是摆线,指圆在直线上滚动时,圆周上某定点的轨迹。
设圆的半径为 r ,在x轴上滚动 x距离则意味着旋转了 x \ r 弧度,则其滚动所产生的摆线如下
r = 1 theta = np.arange(0,6.4,0.1) xCircle0 = np.cos(theta) yCircle0 = 1+np.sin(theta) fig = plt.figure(figsize=(15,4)) ax = fig.add_subplot(autoscale_on=False, xlim=(1,10),ylim=(0,2)) ax.grid() circle, = ax.plot(xCircle0,yCircle0,'-',lw=1) point, = ax.plot([1],[1],'o') trace, = ax.plot([],[],'-', lw=1) theta_text = ax.text(0.02,0.85,'',transform=ax.transAxes) textTemplate = '''x = %.1f°\n''' xs,ys = [], [] def animate(x): if(x==0): xs.clear() ys.clear() xCycloid = x + r*np.cos(-x) #由于是向右顺时针滚,所以角度为负 yCycloid = 1 + r*np.sin(-x) xCircle = xCircle0+x xs.append(xCycloid) ys.append(yCycloid) circle.set_data(xCircle,yCircle0) point.set_data([xCycloid],[yCycloid]) trace.set_data(xs,ys) theta_text.set_text(textTemplate % x) return circle, point, trace, theta_text frames = np.arange(0,10,0.02) ani = animation.FuncAnimation(fig, animate, frames, interval=5, blit=True) ani.save("Cycloid.gif") plt.show()
如果选取圆内或圆外的一点描成轨迹,则为次摆线,圆外点的轨迹为长幅摆线,
反之则为短幅摆线
代码
r = 1 rIn = 0.5 theta = np.arange(0,6.4,0.1) xCircle0 = np.cos(theta) yCircle0 = 1+np.sin(theta) xCircleOut0 = rIn*np.cos(theta) yCircleOut0 = 1+rIn*np.sin(theta) fig = plt.figure(figsize=(20,3)) ax = fig.add_subplot(autoscale_on=False, xlim=(1,15),ylim=(0,2)) ax.grid() circle, = ax.plot(xCircle0,yCircle0,'-',lw=1) circleOut, = ax.plot(xCircleOut0,yCircleOut0,linestyle='--',lw=1) point, = ax.plot([1],[1],'o') pointOut, = ax.plot([1],[1.5],'o') trace, = ax.plot([],[],'-', lw=1) theta_text = ax.text(0.02,0.85,'',transform=ax.transAxes) textTemplate = '''x = %.1f\n''' xs,ys = [], [] def animate(x): if(x==0): xs.clear() ys.clear() xCycloid = x + r*np.cos(-x) yCycloid = 1 + r*np.sin(-x) xCycloidOut = x + rIn*np.cos(-x) yCycloidOut = 1 + rIn*np.sin(-x) xs.append(xCycloidOut) ys.append(yCycloidOut) circle.set_data(xCircle0+x,yCircle0) circleOut.set_data(xCircleOut0+x,yCircleOut0) point.set_data([xCycloid],[yCycloid]) pointOut.set_data([xCycloidOut],[yCycloidOut]) trace.set_data(xs,ys) theta_text.set_text(textTemplate % x) return circle, circleOut, point, pointOut, trace, theta_text frames = np.arange(0,15,0.1) ani = animation.FuncAnimation(fig, animate, frames, interval=50, blit=True) ani.save("Cycloid.gif") plt.show()
随着 λ 的变化,图像的变化过程为
外摆线和心脏线
如果在一个圆绕着另一个固定的圆滚动,如果在圆外滚动,则动圆上的某相对固定点的轨迹为外摆线;若在圆内滚动,则某点的轨迹为内摆线。设定圆半径为 a ,动圆半径为 b ,则绕行旋转 t度后,动圆圆心圆心位置为
若选点 ( a , 0 ) 作为起点,则外摆线的参数方程为
a = b 时就得到了著名的心脏线,被许多直男奉为经典
a = 1 b = 1 theta = np.arange(0,6.4,0.05) fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(autoscale_on=False, xlim=(-3,3),ylim=(-3,3)) theta_text = ax.text(0.02,0.85,'',transform=ax.transAxes) textTemplate = '''θ = %.1f°\n''' ax.grid() xCircle,yCircle = np.cos(theta),np.sin(theta) ax.plot(a*xCircle,a*yCircle,'-',lw=1) pt, = ax.plot([a+b],[0],'*') cir, = ax.plot(a+b+b*yCircle,b*yCircle,'-',lw=1) cycloid, = ax.plot([], [], '-', lw=1) xs,ys = [],[] def animate(t): if(t==0): xs.clear() ys.clear() cenX = (a+b)*np.cos(t) cenY = (a+b)*np.sin(t) cir.set_data(cenX+b*xCircle,cenY+b*yCircle) newX = cenX - b*np.cos((a+b)/b*t) newY = cenY - b*np.sin((a+b)/b*t) xs.append(newX) ys.append(newY) pt.set_data([newX],[newY]) cycloid.set_data(xs,ys) theta_text.set_text(textTemplate % t) return cycloid, cir, pt, theta_text ani = animation.FuncAnimation(fig, animate, theta, interval=50, blit=True) ani.save("Cycloid.gif") plt.show()
如果更改 a \ b比值,则可得到
a \ b=2
a \ b=5
a \ b=1\2
a \ b=2\3
对 a\b进行约分得到 m\ n,曲线由m支组成,总共绕定圆 n周,然后闭合。观察 1 \b = 1 \2 时的曲线,可以看到其前 p i 个值和后 π 个值组成的心形更好看。
如果 a\b是无理数,则永远也不会闭合,例如令 b = e ,由于图片超过5M,所以就不上传了。这个图总共转了17圈,到后期十分考验视力,为了让规律更清晰,我们选择只绘制尖点附近的运动状态,
内摆线与星形线
当动圆在定圆内部转动时,则为内摆线,其方程为
a\b=2
a\b=4
a\b=5
a \b = 3\1
当 a \b = 4 时,其方程可化简为
被称为星形线。
接下来按照惯例,画一下随着 a\ b 比值的变化,内外摆线形状的变化过程
外摆线
内摆线
代码如下
#test.py import argparse #用于命令行的交互 parser = argparse.ArgumentParser() parser.add_argument('bStart', type=float) parser.add_argument('bEnd', type=float) args = parser.parse_args() a = 1 bStart = args.bStart bEnd = args.bEnd fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(autoscale_on=False, xlim=(-(a+2*bEnd),(a+2*bEnd)),ylim=(-(a+2*bEnd),(a+2*bEnd))) theta_text = ax.text(0.02,0.85,'',transform=ax.transAxes) textTemplate = '''a=1, b= %.2f\n''' ax.grid() t = np.arange(0,6.4,0.05) ax.plot(a*np.cos(t),a*np.sin(t),'-',lw=1) cycloid, = ax.plot([], [], '-', lw=1) xs,ys = [],[] t = np.arange(0,30,0.05) def animate(b): xs = (a+b)*np.cos(t) - b*np.cos((a+b)/b*t) ys = (a+b)*np.sin(t) - b*np.sin((a+b)/b*t) cycloid.set_data(xs,ys) theta_text.set_text(textTemplate % b) return cycloid, theta_text ani = animation.FuncAnimation(fig, animate, np.arange(bEnd,bStart,-0.02), interval=50, blit=True) plt.show() ani.save("Cycloid.gif")
在命令行中输入
python test.py -2 2
内摆线和外摆线同常规的摆线一样,皆具有对应的长辐或短辐形式,其标准方程为
当 b > 0时为外摆线, b < 0时为内摆线,对于星形线而言,其变化过程如图所示
以上就是pyhthon绘制超炫酷的心形线星形线摆线的详细内容,更多关于pyhthon绘制心形星形线摆线的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/m0_37816922/article/details/120683674?spm=1001.2014.3001.5501