脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - TensorFlow2基本操作之合并分割与统计

TensorFlow2基本操作之合并分割与统计

2022-01-03 12:07我是小白呀 Python

这篇文章主要介绍了TensorFlow2基本操作之合并分割与统计,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

合并与分割

TensorFlow2基本操作之合并分割与统计

tf.concat

tf.concat可以帮助我们实现拼接操作.

格式:

tf.concat(
  values, axis, name='concat'
)

参数:

  • values: 一个 tensor 或 tensor list
  • axis: 操作的维度
  • name: 数据名称, 默认为 “concat”

例子:

part_1 = tf.zeros([5, 3])
print(part_1)

part_2 = tf.ones([5, 3])
print(part_2)

# 竖向拼接
result_1 = tf.concat([part_1, part_2], axis=0)
print(result_1)

# 横向拼接
result_2 = tf.concat([part_1, part_2], axis=1)
print(result_2)

输出结果:

tf.Tensor(
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]], shape=(5, 3), dtype=float32)
tf.Tensor(
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]], shape=(5, 3), dtype=float32)
tf.Tensor(
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]], shape=(10, 3), dtype=float32)
tf.Tensor(
[[0. 0. 0. 1. 1. 1.]
[0. 0. 0. 1. 1. 1.]
[0. 0. 0. 1. 1. 1.]
[0. 0. 0. 1. 1. 1.]
[0. 0. 0. 1. 1. 1.]], shape=(5, 6), dtype=float32)

tf.stack

rf.stack可以创建一个新的维度来合并两个张量.

TensorFlow2基本操作之合并分割与统计

格式:

tf.stack(
  values, axis=0, name='stack'
)

参数:

  • values: 一个 tensor list
  • axis: 操作的维度
  • name: 数据名称, 默认为 “stack”

例子:

part_1 = tf.zeros([5, 3])
print(part_1)

part_2 = tf.ones([5, 3])
print(part_2)

# 头拼接
result_1 = tf.stack([part_1, part_2], axis=0)
print(result_1)

# 尾拼接
result_2 = tf.stack([part_1, part_2], axis=2)
print(result_2)

输出结果:

tf.Tensor(
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]], shape=(5, 3), dtype=float32)
tf.Tensor(
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]], shape=(5, 3), dtype=float32)
tf.Tensor(
[[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]], shape=(2, 5, 3), dtype=float32)
tf.Tensor(
[[[0. 1.]
[0. 1.]
[0. 1.]]

[[0. 1.]
[0. 1.]
[0. 1.]]

[[0. 1.]
[0. 1.]
[0. 1.]]

[[0. 1.]
[0. 1.]
[0. 1.]]

[[0. 1.]
[0. 1.]
[0. 1.]]], shape=(5, 3, 2), dtype=float32)

tf.unstack

tf.unstack是一个矩阵分解函数.

格式:

# unstack
tf.unstack(
value, num=None, axis=0, name='unstack'
)

参数:

  • values: 一个 tensor, 维度大于 0
  • num: 轴的长度
  • axis: 操作的维度
  • name: 数据名称, 默认为 “unstack”

例子:

a = tf.stack([tf.zeros([5, 3]), tf.ones([5, 3])], axis=0)
print(a)

b = tf.unstack(a, axis=0)
print(b)

输出结果:

tf.Tensor(
[[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]], shape=(2, 5, 3), dtype=float32)
[<tf.Tensor: shape=(5, 3), dtype=float32, numpy=
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], dtype=float32)>, <tf.Tensor: shape=(5, 3), dtype=float32, numpy=
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=float32)>]

tf.split

tf.split()可以把一个张量划分为几个子张量.

TensorFlow2基本操作之合并分割与统计

格式:

tf.split(
  value, num_or_size_splits, axis=0, num=None, name='split'
)

参数:

  • value: 待切分的张量
  • num_or_size_splits: 切成几份
  • axis: 操作的维度
  • num: num_or_size_splits 不能实现的情况下使用
  • name: 数据名称, 默认为 “split”

例子:

# split
a = tf.stack([tf.zeros([5, 3]), tf.ones([5, 3])], axis=0)
print(a)

b = tf.split(a, 2)
print(b)

输出结果:

tf.Tensor(
[[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]], shape=(2, 5, 3), dtype=float32)
[<tf.Tensor: shape=(1, 5, 3), dtype=float32, numpy=
array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]], dtype=float32)>, <tf.Tensor: shape=(1, 5, 3), dtype=float32, numpy=
array([[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]], dtype=float32)>]

 

数据统计

TensorFlow2基本操作之合并分割与统计

tf.norm

tf.norm可以帮助我们计算向量, 矩阵, 张量的范数.

格式:

tf.norm(
  tensor, ord='euclidean', axis=None, keepdims=None, name=None
)

参数:

  • tensor: 输入的张量
  • ord: 范数的顺序
  • axis: 操作的维度
  • keep_dims: 如果为 True, 则 axis 中指定的轴将保持为大小 1
  • name: 数据名称

例子:

a = tf.fill([2, 2], 2.0)
print(a)

# sqrt(2^2 * 4) = sqrt(16) = 4
b = tf.norm(a)
print(b)

# [2 + 2, 2 + 2] = [4, 4]
c = tf.norm(a, ord=1, axis= 0)
print(c)

# [sqrt(2^2 + 2^2), sqrt(2^2 + 2^2)] = [sqrt(8), sqrt(8)]
d = tf.norm(a, ord=2, axis= 0)
print(d)

输出结果:

tf.Tensor(
[[2. 2.]
[2. 2.]], shape=(2, 2), dtype=float32)
tf.Tensor(4.0, shape=(), dtype=float32)
tf.Tensor([4. 4.], shape=(2,), dtype=float32)
tf.Tensor([2.828427 2.828427], shape=(2,), dtype=float32)

reduce_min/max/mean

计算一个张量各个维度上元素的最小值 / 最大值 / 平均值.

格式:

tf.math.reduce_min / reduce_max / reduce_mean(
  input_tensor, axis=None, keepdims=False, name=None
)

参数:

  • input_tensor: 传入的张量
  • axis: 维度, 默认计算所有维度
  • keepdims: 如果为真保留维度, 默认为 False
  • name: 数据名称

例子:

a = tf.reshape(tf.range(9), [3, 3])
print(a)

min = tf.reduce_min(a)
print(min)

max = tf.reduce_max(a)
print(max)

输出结果:

tf.Tensor(
[[0 1 2]
[3 4 5]
[6 7 8]], shape=(3, 3), dtype=int32)
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(8, shape=(), dtype=int32)

argmax / argmin

tf.argmax/tf.argmin可以帮我们找到最大 / 最小值所在的索引 (index).

格式:

tf.math.argmax(
  input, axis=None, output_type=tf.dtypes.int64, name=None
)

参数:

  • input: 输入
  • axis: 操作的维度
  • output_type: 输出数据类型, 默认为 int64
  • name: 数据名称

例子:

# argmax / argmin
a = tf.reshape(tf.range(9), [3, 3])
print(a)

max = tf.argmax(a)
print(max)

min = tf.argmin(a)
print(min)

输出结果:

tf.Tensor(
[[0 1 2]
[3 4 5]
[6 7 8]], shape=(3, 3), dtype=int32)
tf.Tensor([2 2 2], shape=(3,), dtype=int64)
tf.Tensor([0 0 0], shape=(3,), dtype=int64)

tf.equal

tf.equal可以帮助我们判断两个张量是否相等. 返回 True / False.

TensorFlow2基本操作之合并分割与统计

格式:

tf.math.equal(
  x, y, name=None
)

例子:

a = tf.zeros(5, dtype=tf.float32)
print(a)

b = tf.range(5, dtype=tf.float32)
print(b)

print(tf.equal(a, b))

输出结果:

tf.Tensor([0. 0. 0. 0. 0.], shape=(5,), dtype=float32)
tf.Tensor([0. 1. 2. 3. 4.], shape=(5,), dtype=float32)
tf.Tensor([ True False False False False], shape=(5,), dtype=bool)

tf.unique

tf.unique可以帮我们找出张量中不重复的值

格式:

tf.unique(
  x, out_idx=tf.dtypes.int32, name=None
)

参数:

  • input: 输入
  • output_type: 输出数据类型, 默认为 int32
  • name: 数据名称

例子:

a = tf.range(5)
print(tf.unique(a))

b = tf.constant([4, 2, 2, 4, 3])
print(tf.unique(b))

输出结果:

Unique(y=<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>, idx=<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>)
Unique(y=<tf.Tensor: shape=(3,), dtype=int32, numpy=array([4, 2, 3])>, idx=<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 1, 0, 2])>)

到此这篇关于一小时学会TensorFlow2基本操作之合并分割与统计的文章就介绍到这了,更多相关TensorFlow2合并分割与统计内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://iamarookie.blog.csdn.net/article/details/117755839

延伸 · 阅读

精彩推荐