服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++实现LeetCode(312.打气球游戏)

C++实现LeetCode(312.打气球游戏)

2021-12-01 14:56Grandyang C/C++

这篇文章主要介绍了C++实现LeetCode(312.打气球游戏),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 312. Burst Balloons 打气球游戏

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon iyou will get nums[left] * nums[i] * nums[right]coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:

  • You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
  • 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Input:

[3,1,5,8]

Output:

167

Explanation:

nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

Credits:
Special thanks to @peisi for adding this problem and creating all test cases.

这道题提出了一种打气球的游戏,每个气球都对应着一个数字,每次打爆一个气球,得到的金币数是被打爆的气球的数字和其两边的气球上的数字相乘,如果旁边没有气球了,则按1算,以此类推,求能得到的最多金币数。参见题目中给的例子,题意并不难理解。那么大家拿到题后,总是会习惯的先去想一下暴力破解法吧,这道题的暴力搜索将相当的复杂,因为每打爆一个气球,断开的地方又重新挨上,所有剩下的气球又要重新遍历,这使得分治法不能 work,整个的时间复杂度会相当的高,不要指望可以通过 OJ。而对于像这种求极值问题,一般都要考虑用动态规划 Dynamic Programming 来做,维护一个二维动态数组 dp,其中 dp[i][j] 表示打爆区间 [i,j] 中的所有气球能得到的最多金币。题目中说明了边界情况,当气球周围没有气球的时候,旁边的数字按1算,这样可以在原数组两边各填充一个1,方便于计算。这道题的最难点就是找状态转移方程,还是从定义式来看,假如区间只有一个数,比如 dp[i][i],那么计算起来就很简单,直接乘以周围两个数字即可更新。如果区间里有两个数字,就要算两次了,先打破第一个再打破了第二个,或者先打破第二个再打破第一个,比较两种情况,其中较大值就是该区间的 dp 值。假如区间有三个数呢,比如 dp[1][3],怎么更新呢?如果先打破第一个,剩下两个怎么办呢,难道还要分别再遍历算一下吗?这样跟暴力搜索的方法有啥区别呢,还要 dp 数组有啥意思。所谓的状态转移,就是假设已知了其他状态,来推导现在的状态,现在是想知道 dp[1][3] 的值,那么如果先打破了气球1,剩下了气球2和3,若之前已经计算了 dp[2][3] 的话,就可以使用其来更新 dp[1][3] 了,就是打破气球1的得分加上 dp[2][3]。那假如先打破气球2呢,只要之前计算了 dp[1][1] 和 dp[3][3],那么三者加起来就可以更新 dp[1][3]。同理,先打破气球3,就用其得分加上 dp[1][2] 来更新 dp[1][3]。说到这里,是不是感觉豁然开朗了 ^.^

那么对于有很多数的区间 [i, j],如何来更新呢?现在是想知道 dp[i][j] 的值,这个区间可能比较大,但是如果知道了所有的小区间的 dp 值,然后聚沙成塔,逐步的就能推出大区间的 dp 值了。还是要遍历这个区间内的每个气球,就用k来遍历吧,k在区间 [i, j] 中,假如第k个气球最后被打爆,那么此时区间 [i, j] 被分成了三部分,[i, k-1],[k],和 [k+1, j],只要之前更新过了 [i, k-1] 和 [k+1, j] 这两个子区间的 dp 值,可以直接用 dp[i][k-1] 和 dp[k+1][j],那么最后被打爆的第k个气球的得分该怎么算呢,你可能会下意识的说,就乘以周围两个气球被 nums[k-1] * nums[k] * nums[k+1],但其实这样是错误的,为啥呢?dp[i][k-1] 的意义是什么呢,是打爆区间 [i, k-1] 内所有的气球后的最大得分,此时第 k-1 个气球已经不能用了,同理,第 k+1 个气球也不能用了,相当于区间 [i, j] 中除了第k个气球,其他的已经爆了,那么周围的气球只能是第 i-1 个,和第 j+1 个了,所以得分应为 nums[i-1] * nums[k] * nums[j+1],分析到这里,状态转移方程应该已经跃然纸上了吧,如下所示:

dp[i][j] = max(dp[i][j], nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j])                 ( i k j )

有了状态转移方程了,就可以写代码,下面就遇到本题的第二大难点了,区间的遍历顺序。一般来说,遍历所有子区间的顺序都是i从0到n,然后j从i到n,然后得到的 [i, j] 就是子区间。但是这道题用这种遍历顺序就不对,在前面的分析中已经说了,这里需要先更新完所有的小区间,然后才能去更新大区间,而用这种一般的遍历子区间的顺序,会在更新完所有小区间之前就更新了大区间,从而不一定能算出正确的dp值,比如拿题目中的那个例子 [3, 1, 5, 8] 来说,一般的遍历顺序是:

[3] -> [3, 1] -> [3, 1, 5] -> [3, 1, 5, 8] -> [1] -> [1, 5] -> [1, 5, 8] -> [5] -> [5, 8] -> [8] 

显然不是我们需要的遍历顺序,正确的顺序应该是先遍历完所有长度为1的区间,再是长度为2的区间,再依次累加长度,直到最后才遍历整个区间:

[3] -> [1] -> [5] -> [8] -> [3, 1] -> [1, 5] -> [5, 8] -> [3, 1, 5] -> [1, 5, 8] -> [3, 1, 5, 8]

这里其实只是更新了 dp 数组的右上三角区域,最终要返回的值存在 dp[1][n] 中,其中n是两端添加1之前数组 nums 的个数。参见代码如下:

解法一:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        nums.insert(nums.begin(), 1);
        nums.push_back(1);
        vector<vector<int>> dp(n + 2, vector<int>(n + 2, 0));
        for (int len = 1; len <= n; ++len) {
            for (int i = 1; i <= n - len + 1; ++i) {
                int j = i + len - 1;
                for (int k = i; k <= j; ++k) {
                    dp[i][j] = max(dp[i][j], nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]);
                }
            }
        }
        return dp[1][n];
    }
};

对于题目中的例子[3, 1, 5, 8],得到的dp数组如下:

0    0    0    0       0     0
0    3    30  159  167  0
0    0    15  135  159  0
0    0    0    40     48   0
0    0    0    0       40   0
0    0    0    0       0     0

这题还有递归解法,思路都一样,就是写法略有不同,参见代码如下:

解法二:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        nums.insert(nums.begin(), 1);
        nums.push_back(1);
        vector<vector<int>> dp(n + 2, vector<int>(n + 2, 0));
        return burst(nums, dp, 1 , n);
    }
    int burst(vector<int>& nums, vector<vector<int>>& dp, int i, int j) {
        if (i > j) return 0;
        if (dp[i][j] > 0) return dp[i][j];
        int res = 0;
        for (int k = i; k <= j; ++k) {
            res = max(res, nums[i - 1] * nums[k] * nums[j + 1] + burst(nums, dp, i, k - 1) + burst(nums, dp, k + 1, j));
        }
        dp[i][j] = res;
        return res;
    }
};

到此这篇关于C++实现LeetCode(312.打气球游戏)的文章就介绍到这了,更多相关C++实现打气球游戏内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://www.cnblogs.com/grandyang/p/5006441.html

延伸 · 阅读

精彩推荐
  • C/C++C++之重载 重定义与重写用法详解

    C++之重载 重定义与重写用法详解

    这篇文章主要介绍了C++之重载 重定义与重写用法详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下...

    青山的青6062022-01-04
  • C/C++C语言中炫酷的文件操作实例详解

    C语言中炫酷的文件操作实例详解

    内存中的数据都是暂时的,当程序结束时,它们都将丢失,为了永久性的保存大量的数据,C语言提供了对文件的操作,这篇文章主要给大家介绍了关于C语言中文件...

    针眼_6702022-01-24
  • C/C++深入理解goto语句的替代实现方式分析

    深入理解goto语句的替代实现方式分析

    本篇文章是对goto语句的替代实现方式进行了详细的分析介绍,需要的朋友参考下...

    C语言教程网7342020-12-03
  • C/C++C/C++经典实例之模拟计算器示例代码

    C/C++经典实例之模拟计算器示例代码

    最近在看到的一个需求,本以为比较简单,但花了不少时间,所以下面这篇文章主要给大家介绍了关于C/C++经典实例之模拟计算器的相关资料,文中通过示...

    jia150610152021-06-07
  • C/C++详解c语言中的 strcpy和strncpy字符串函数使用

    详解c语言中的 strcpy和strncpy字符串函数使用

    strcpy 和strcnpy函数是字符串复制函数。接下来通过本文给大家介绍c语言中的strcpy和strncpy字符串函数使用,感兴趣的朋友跟随小编要求看看吧...

    spring-go5642021-07-02
  • C/C++C语言实现电脑关机程序

    C语言实现电脑关机程序

    这篇文章主要为大家详细介绍了C语言实现电脑关机程序,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    xiaocaidayong8482021-08-20
  • C/C++学习C++编程的必备软件

    学习C++编程的必备软件

    本文给大家分享的是作者在学习使用C++进行编程的时候所用到的一些常用的软件,这里推荐给大家...

    谢恩铭10102021-05-08
  • C/C++c++ 单线程实现同时监听多个端口

    c++ 单线程实现同时监听多个端口

    这篇文章主要介绍了c++ 单线程实现同时监听多个端口的方法,帮助大家更好的理解和学习使用c++,感兴趣的朋友可以了解下...

    源之缘11542021-10-27