看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
class ConvNet(nn.module): def __init__( self , num_class = 10 ): super (ConvNet, self ).__init__() self .layer1 = nn.Sequential(nn.Conv2d( 1 , 16 , kernel_size = 5 , stride = 1 , padding = 2 ), nn.BatchNorm2d( 16 ), nn.ReLU(), nn.MaxPool2d(kernel_size = 2 , stride = 2 )) self .layer2 = nn.Sequential(nn.Conv2d( 16 , 32 , kernel_size = 5 , stride = 1 , padding = 2 ), nn.BatchNorm2d( 32 ), nn.ReLU(), nn.MaxPool2d(kernel_size = 2 , stride = 2 )) self .fc = nn.Linear( 7 * 7 * 32 , num_classes) def forward( self , x): out = self .layer1(x) out = self .layer2(out) print (out.size()) out = out.reshape(out.size( 0 ), - 1 ) out = self .fc(out) return out |
1
2
3
4
5
6
7
8
9
10
11
12
|
# Test the model model. eval () # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance) with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch. max (outputs.data, 1 ) total + = labels.size( 0 ) correct + = (predicted = = labels). sum ().item() |
如果网络模型model中含有BN层,则在预测时应当将模式切换为评估模式,即model.eval()。
评估模拟下BN层的均值和方差应该是整个训练集的均值和方差,即 moving mean/variance。
训练模式下BN层的均值和方差为mini-batch的均值和方差,因此应当特别注意。
补充:Pytorch 模型训练模式和eval模型下差别巨大(Pytorch train and eval)附解决方案
当pytorch模型写明是eval()时有时表现的结果相对于train(True)差别非常巨大,这种差别经过逐层查看,主要来源于使用了BN,在eval下,使用的BN是一个固定的running rate,而在train下这个running rate会根据输入发生改变。
解决方案是冻住bn
1
2
3
4
|
def freeze_bn(m): if isinstance (m, nn.BatchNorm2d): m. eval () model. apply (freeze_bn) |
这样可以获得稳定输出的结果。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/jiangkejie/p/9983451.html