服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++实现PatchMatch图像修复算法

C++实现PatchMatch图像修复算法

2021-11-02 14:23周旋_ C/C++

这篇文章主要介绍了C++实现PatchMatch图像修复算法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

PatchMatch算法出自Barnes的论文

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

PatchMatch 算法就是一个找近似最近邻(Approximate Nearest neigbhor)的方法,要比其他ANN算法快上10倍+。

将下面的图理解了,就基本理解了整个算法。

C++实现PatchMatch图像修复算法

看上图时,我们以蓝色为主颜色。A代表原图像,矩形框代表待修复的patch块,要修复patch_A块就需要在B(也是原图)中搜索一个最合适的块patch_B,而从patch_A到patch_B的偏移量,就是上图箭头,也就是offset。

蓝色为主patch块,红色是蓝色向左移一个像素,绿色是蓝色向上移一个像素。

上图 (a):随机初始化 (b):传播 ©:随机扰动搜索

PatchMatch 的核心思想是利用图像的连续性(consistence), 一个图像A的patch_A(蓝色)附近的Patch块(红色绿色)的最近邻(B中的红色绿色框)最有可能出现在Patch_A的最近邻(B中的蓝色框)附近,利用这种图像的连续性大量减少搜索的范围,通过迭代的方式保证大多数点能尽快收敛。

PatchMatch算法是对所有待修复像素迭代修复的,而不是像Criminisi或FMM算法对待修复区域像素优先级排序后进行渐进修复的。

来看算法步骤:

C++实现PatchMatch图像修复算法

首先是建立图像的下采样金字塔模型,代码中设定为五层,建立模型后

对A的待修复区域每个patch块随机在B已知区域中匹配一个patch块,即初始化偏置地图(上图a步骤)。

/*********************************
函数声明:初始化偏置图像
参数:NONE
注释:NONE
测试:NONE
**********************************/
void PatchMatch::InitOff(Mat Mask, Mat &Off)
{
	//为方便起见,将所有的都附上,要求不能赋值到非搜索区域
	//初始化格式
	Off = Mat(Mask.size(), CV_32FC2, Scalar::all(0));//2维无符号32位精度浮点数

	for (int i = 0; i < Mask.rows; i++)
	{
		for (int j = 0; j < Mask.cols; j++)
		{
			//不考虑search区域,没有破损,他们的最佳偏移向量当然是0,自己
			if (Mask.at<uchar>(i, j) == search)
			{
				Off.at<Vec2f>(i, j)[0] = 0;  //<Vec2f> 向量,2维,浮点数
				Off.at<Vec2f>(i, j)[1] = 0;
			}
			else//处理hole,采用随机偏置  
			{
				//先初始化2个偏置数r_col,r_row
				int r_col = rand() % Mask.cols; //rand()产生随机数,主要是产生一个偏置的初始值
				int r_row = rand() % Mask.rows;
				r_col = r_col + j < Mask.cols ? r_col : r_col - Mask.cols;//边界检测
				r_row = r_row + i < Mask.rows ? r_row : r_row - Mask.rows;

				//为什么要有这个循环?因为一次的随机赋值,很可能会出现偏置后的块跑到破损区域,或者是超出限定搜索框的边界
				while (
					!(Mask.at<uchar>(r_row + i, r_col + j) == search	//这里加上I,j,是因为他是A投影到B中的搜索偏置
						&& abs(r_row) < searchrowratio*Mask.rows))	//searchrowratio=0.5,搜索的时候,确保r_row偏置不会太远,一定是在原图像的大小里	
				{
					r_col = rand() % Mask.cols;
					r_row = rand() % Mask.rows;

					//边界检测
					r_col = r_col + j < Mask.cols ? r_col : r_col - Mask.cols;
					r_row = r_row + i < Mask.rows ? r_row : r_row - Mask.rows;
				}

				//赋偏置值
				Off.at<Vec2f>(i, j)[0] = r_row;
				Off.at<Vec2f>(i, j)[1] = r_col;
			}
		}
	}
}

之后从低分辨率开始,对于每一层金字塔模型进行迭代:

每一次迭代都会遍历原图A待修复区域所有像素。当遍历到当前像素时,执行下面的步骤来进行修复:

步骤一:传播(图中b步骤)

传播会计算原图A当前像素块patch_A(蓝色)对应的B中的patch_B_1,patch_A上方(绿色)(奇数次迭代为下方)对应的B中的patch_B_2,patch_A左侧(红色)(奇数次迭代为右侧)对应的B中的patch_B_3这三个patch块中与patch_A相似度最高的patch块。

计算相似度函数为

//以块为单位,用所有像素点的相同颜色通道的差平方来简单判断相似度
float PatchMatch::Distance(Mat Dst, Mat Src)
{
	float distance = 0;

	for (int i = 0; i < Dst.rows; i++)
	{
		for (int j = 0; j < Dst.cols; j++)
		{
			for (int k = 0; k < 3; k++)//K=3个颜色通道
			{
				int tem = Src.at < Vec3b >(i, j)[k] - Dst.at < Vec3b >(i, j)[k];
				distance += tem * tem;//差平方
			}
		}
	}

	return distance;
}

传播函数:

//迭代第一步:传播
//(now_row, now_col):patch里的像素
//odd:当前迭代次
void PatchMatch::Propagation(Mat Dst, Mat Src, Mat Mask, Mat &Off, int row, int col,int odd)
{
	Mat DstPatch = GetPatch(Dst, row, col);//获取长度为 patchsize = 3 的边界框, (row, col)代表的是中心像素点坐标

	if (odd % 2 == 0)//偶次迭代
	{
		//提取(row, col)的match块
		Mat SrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col)[0],
			col + Off.at < Vec2f >(row, col)[1]);

		//提取(row, col-1)的match块
		Mat LSrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col - 1)[0],
			col - 1 + Off.at < Vec2f >(row, col - 1)[1]);

		//提取(row-1, col)的match块
		Mat USrcPatch = GetPatch(Src,
			row - 1 + Off.at < Vec2f >(row - 1, col)[0],
			col + Off.at < Vec2f >(row - 1, col)[1]);

		//返回上面4个块最相似的块的代表数字,用于switch判断
		int location = GetMinPatch1(DstPatch, SrcPatch, LSrcPatch, USrcPatch);

		//利用上面的信息更新像素点的偏置地图
		switch (location)
		{
			//若是1则不更新
		case 2:
			Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row, col - 1)[0];
			Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row, col - 1)[1] - 1;
			break;
		case 3:
			Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row - 1, col)[0] - 1;
			Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row - 1, col)[1];
			break;
		}
	}

	else//奇数次迭代
	{
		Mat SrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col)[0],
			col + Off.at < Vec2f >(row, col)[1]);
		Mat RSrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col + 1)[0],
			col + 1 + Off.at < Vec2f >(row, col + 1)[1]);
		Mat DSrcPatch = GetPatch(Src,
			row + 1 + Off.at < Vec2f >(row + 1, col)[0],
			col + Off.at < Vec2f >(row + 1, col)[1]);

		int location = GetMinPatch1(DstPatch, SrcPatch, RSrcPatch, DSrcPatch);
		switch (location)
		{
		case 2:
			Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row, col + 1)[0];
			Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f
			>(row, col + 1)[1] + 1;
			break;
		case 3:
			Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f
			>(row + 1, col)[0] + 1;
			Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row + 1, col)[1];
			break;
		}
	}
}

步骤二:随机扰动搜索(图中c步骤)

为了避免陷入局部极值,再额外再随机生成几个patch位置作为候选patch块,若小于当前patch,则更新。

随机扰动会在原图A中,以当前像素为中心点,初始半径区域为全图,在此区域内随机找寻patch块并与patch_A原本对应的B中的patch块对比,若更相似则更新对应关系offset,然后以新的patch_B为中心,半径缩小一倍,继续搜索,直到半径缩小为1,更新完毕。

//迭代第二步:随机搜索
//(row,col)=(now_row, now_col):修复patch里的像素
void PatchMatch::RandomSearch(Mat Dst, Mat Src, Mat Mask, Mat &Off, int row, int col)
{
	Mat DstPatch = GetPatch(Dst, row, col);//获取修复基准框,在框内操作

	//迭代指数
	int attenuate = 0;

	while (true)
	{
		//获取随机参数,在 [-1;1] 间
		float divcol = rand() % 2000 / 1000.0f - 1.0f;
		float divrow = rand() % 2000 / 1000.0f - 1.0f;

		//减小框大小的公式,
			

延伸 · 阅读

精彩推荐