脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - 用Python的绘图库(matplotlib)绘制小波能量谱

用Python的绘图库(matplotlib)绘制小波能量谱

2021-10-13 13:38HoryChang Python

这篇文章主要介绍了用Python的绘图库(matplotlib)绘制小波能量谱,代码简单详细,思路清晰,需要的朋友可以参考下

时间小波能量谱

  • 反映信号的小波能量沿时间轴的分布。

由于小波变换具有等距效应,所以有:

用Python的绘图库(matplotlib)绘制小波能量谱

式中

用Python的绘图库(matplotlib)绘制小波能量谱

表示信号强度,对于式在平移因子b方向上进行加权积分

用Python的绘图库(matplotlib)绘制小波能量谱

式中

用Python的绘图库(matplotlib)绘制小波能量谱

代表时间-小能量谱

尺度小波能量谱

  • 反映信号的小波能量随尺度的变化情况。

同理,对式在尺度方向上进行加权积分:

用Python的绘图库(matplotlib)绘制小波能量谱

式中

用Python的绘图库(matplotlib)绘制小波能量谱

连续小波变换

  • 连续小波变换的结果是一个小波系数矩阵,随着尺度因子和位移因子变化。然后将系数平方后得到小波能量,把每个尺度因子对应的所有小波能量进行叠加,那么就可以得到随尺度因子变换的小波能量谱曲线。把尺度换算成频率后,这条曲线就可视为是频谱图。

代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pywt
from mpl_toolkits.mplot3d import axes3d
from matplotlib.ticker import multiplelocator, formatstrformatter
# 解决负号显示问题
plt.rcparams['axes.unicode_minus'] = false  # 解决保存图像是负号'-'显示为方块的问题
plt.rcparams.update({'text.usetex': false, 'font.family': 'serif', 'font.serif': 'cmr10', 'mathtext.fontset': 'cm'})
font1 = {'family': 'simhei', 'weight': 'normal', 'size': 12}
font2 = {'family': 'times new roman', 'weight': 'normal', 'size': 18}
label = {'family': 'simhei', 'weight': 'normal', 'size': 15}
xlsx_path = "../小波能量谱作图.xlsx"
sheet_name = "表名"     
data_arr = pd.read_excel(xlsx_path, sheet_name=sheet_name)
column_name = '列名'    
row = 1024
y = data_arr[column_name][0:row]
x = data_arr['time'][0:row]
scale = np.arange(1, 50)
wavelet = 'gaus1'   # 'morl'  'gaus1'  小波基函数
# 时间-尺度小波能量谱
def time_scale_spectrum():
    coefs, freqs = pywt.cwt(y, scale, wavelet)  # np.arange(1, 31) 第一个参数必须 >=1     'morl'  'gaus1'
    scale_freqs = np.power(freqs, -1# 对频率freqs 取倒数变为尺度
    fig = plt.figure(figsize=(5, 4))
    ax = axes3d(fig)
    # x:time   y:scale   z:amplitude
    x = np.arange(0, row, 1# [0-1023]
    y = scale_freqs
    x, y = np.meshgrid(x, y)
    z = abs(coefs)
    # 绘制三维曲面图
    ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='rainbow')
    # 设置三个坐标轴信息
    ax.set_xlabel('$mileage/km$', color='b', fontsize=12)
    ax.set_ylabel('$scale$', color='g', fontsize=12)
    ax.set_zlabel('$amplitude/mm$', color='r', fontsize=12)
    plt.draw()
    plt.show()
# 时间小波能量谱
def time_spectrum():
    coefs, freqs = pywt.cwt(y, scale, wavelet)
    coefs_pow = np.power(coefs, 2)      # 对二维数组中的数平方
    spectrum_value = [0] * row    # len(freqs)
    # 将二维数组按照里程叠加每个里程上的所有scale值
    for i in range(row):
        sum = 0
        for j in range(len(freqs)):
            sum += coefs_pow[j][i]
        spectrum_value[i] = sum
    fig = plt.figure(figsize=(7, 2))
    line_width = 1
    line_color = 'dodgerblue'
    line_style = '-'
    t1 = fig.add_subplot(1, 1, 1)
    t1.plot(x, spectrum_value, label='模拟', linewidth=line_width, color=line_color, linestyle=line_style)
    # t1.legend(loc='upper right', prop=font1, frameon=true)  # lower ,left
    # 坐标轴名称
    t1.set_xlabel('$time$', fontsize=15, fontdict=font1)  # fontdict设置子图字体
    t1.set_ylabel('$e/mm^2$', fontsize=15, fontdict=font1)
    # 坐标刻度值字体大小
    t1.tick_params(labelsize=15)
    print(spectrum_value[269])
    plt.show()
# 尺度小波能量谱
def scale_spectrum():
    coefs, freqs = pywt.cwt(y, scale, wavelet)
    coefs_pow = np.power(coefs, 2)      # 对二维数组中的数平方
    scale_freqs = np.power(freqs, -1)   # 对频率freqs 取倒数变为尺度
    spectrum_value = [0] * len(freqs)    # len(freqs)
    # 将二维数组按照里程叠加每个里程上的所有scale值
    for i in range(len(freqs)):
        sum = 0
        for j in range(row):
            sum += coefs_pow[i][j]
        spectrum_value[i] = sum
    fig = plt.figure(figsize=(7, 4))
    line_width = 1
    line_color1 = 'dodgerblue'
    line_style1 = '-'
    t1 = fig.add_subplot(1, 1, 1)
    t1.plot(scale_freqs, spectrum_value, label=column_name, linewidth=line_width, color=line_color1, linestyle=line_style1)
    # t1.legend(loc='upper right', prop=font1, frameon=true)  # lower ,left
    # 坐标轴名称
    t1.set_xlabel('$scale$', fontsize=15, fontdict=font1)  # fontdict设置子图字体
    t1.set_ylabel('$e/mm^2$', fontsize=15, fontdict=font1)
    # 坐标刻度值字体大小
    t1.tick_params(labelsize=15)
    plt.show()
# 通过调用下面三个不同的函数选择绘制能量谱
time_scale_spectrum()
# time_spectrum()
# scale_spectrum()

最终绘制的能量谱图如下:

1.时间-尺度小波能量谱

用Python的绘图库(matplotlib)绘制小波能量谱

2.时间小波能量谱

用Python的绘图库(matplotlib)绘制小波能量谱

3.尺度小波能量谱

用Python的绘图库(matplotlib)绘制小波能量谱

到此这篇关于用python的绘图库(matplotlib)绘制小波能量谱的文章就介绍到这了,希望对你有帮助,更多相关用python绘制内容请搜索服务器之家以前的文章或继续浏览下面的相关文章,希望大家以后多多支持服务器之家!

原文链接:https://blog.csdn.net/weixin_44471490/article/details/115681322

延伸 · 阅读

精彩推荐